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Abstract We exramine the changes in the
profile of the human face with age. First
the medial plane running down the maddle
of the face is found using a variant of the
Iterative Closest Point Algorithm, optimis-
ing over the set of reflections. The boundary
of the silhouette as viewed from the side is
extracted. Landmarks are found using bi-
tangent lines and extremals of distance. A
representation of size and shape is found us-
ing Procrustes Analysis. Principal Compo-
nent Analysis 1s used to ezamine how size
and shape varies with growth. Promising
early results are presented.
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1 Introduction

In this paper we will discuss a semi-automatic
method for analysing growth of faces and
present some preliminary results. We will con-
centrate on landmarks lying on the medial
plane which separates the left and right sides
of the face. The general scheme we will follow
is: find the plane of symmetry (Section 2); ex-
tract the profile (§3); find a set of homologous
landmarks (§4); use Procrustes Analysis and
Principal Component Analysis to analyse the
size and shape information (§5).
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We have obtained a set of laser scans [12]
from a number of individuals with between two
and eight scans per subject taken at ages be-
tween 5 and 15. Each scan consists of about
30,000 3D points arranged as a mesh of quadri-
laterals. For the purpose of this paper we do
a preliminary analysis of the scans of five indi-
viduals (a total of 28 scans in all).

The study of the human face presents a
number of challenges to shape analysis due to
the wide variation in shape between subjects
and the fact that different parts grow at dif-
ferent rates. Furthermore, finding landmarks
on the face is a non trivial process, and the
anatomical landmarks are not always suitable
for computer-based visualisation systems.

The face has been well-studied by
anatomists, and there is a vast literature
on the subject. Of particular interest are the
following. Enlow and Hans [4, Ch. 8] which
describes the major types of head forms and
patterns of growth. Farkas and colleagues
have written a series of articles [5] describing
how the mean distance between landmarks
changes with age. Feik and Glover [6] review
some of the major findings about growth of
the head. For children between 5 and 15,
these works conclude that there is considerable
growth in the nose, less growth in the jaw,
and very little in the lips and forehead. We
will examine how well these conclusions are
supported by our results.



The statistical analysis of faces dates back
to Galton. In his earlier work [7] he looked at
variations in the positions of various landmarks
with respect to a fixed base line. His later work
[8] classified segments between landmarks of a
profile according to a number of prototypes.
Much work has also been done in the statistical
analysis of shape. A detailed introduction to
the subject can be found in [3].

2 Finding the Medial Plane

In this section we describe a method for finding
the medial plane of a head. This is the plane
which runs vertically down through the nose
separating the left and right sides of the head.
We use a version of the Iterative Closest Point
algorithm (ICP) to find a sequence of planes
each of which is a closer approximation to the
medial plane. See [1] for a discussion of the
ICP algorithm. Our algorithm is similar to the
“Head-in-the-Hat” algorithm of Pelizzari and
Chen [13].

Let X = {x; € R®:1 <4 < n} be a set of
points representing the head, with n ~ 30, 000.
Given a plane P let Rp denote the reflection
in P. The ICP algorithm consists of a number
of steps:

1. Choose an initial plane P by hand.

2. For each x; € X define y; € X to be the
closest point in X to Rp(x;).

3. Let d; = ||x; — yil|- Let w; = 1if d; < d,
w; = 0 otherwise. Thus d; is approxi-
mately twice the distance from z; to P,
and d is chosen to be twice the width of the
nose. If either x; or y; lies on the bound-
ary of the polygonization of the head then
w; is also set to zero.

4. Find the plane ) which minimises

1 n
= > w;x; — Ro(yi)l?,
=1

over (.

Figure 1: The initial hand estimate of the me-
dial plane (thin line), and the final estimate
after ICP (thicker line).

5. Set P = () and repeat steps 2-5 until con-
vergence.

In practice steps 2-5 are repeated thirty times.
This gave a good convergence on all the sub-
jects tested.

The slowest part of the algorithm is step 2
which finds the closest points X for each point
in Rp(x;). A simple minded approach calcu-
lates the distance to every point in the set. As
we have about 30,000 points for each face, this
can take a considerable time. This step can
be speeded up by about ninety-fold by using a
geometric hash table consisting of a 7 X 7 x 7
array of boxes. Most of the time we just need
to to check the distances to points lying inside
just one of these boxes.

One side of the head is normally slightly
larger than the other so using an unweighted
sum in step 4 would result in a medial plane
which is shifted a little to one side. Using the
weighting function in step 3 largely eliminates
this problem. Testing for points on the bound-
ary eliminates problems when there are holes
in the data.

A least squares technique is used to minimise
the sum in step 4. We follow the work Mardia
et. al. [11] who look at the equivalent prob-



lem of reflections in planes through the origin.
Write the plane @ as az + by + ¢z = d with
a = (a,b,c)T a unit length vector. The re-
flection of a point x is Rg(x) = x + 2(d —
aTx)a. The sum in step 4 is minimised when
a is the solution of the eigenvalue problem
(C — mmT)a = a with minimum eigenvalue
and d = %mTa. Here C' is the covariance-
like matrix >, wi(x:y? + yix2) /(23 w;) and
m = 37 (wix; +y:)/(2 32 wy).

Figure 1 shows the results of the ICP al-
gorithm. The thin line is our original hand
estimate of the medial plane and the thicker
line is the estimate after ten iterations. The
hand-estimate was chosen poorly to illustrate
the benificial effects of the algorithm; we can
see that the final result is much closer to what
we expect the medial plane to be.

3 Calculating Profiles

We now simplify the problem to a two dimen-
sional one by calculating the profile of the sur-
face as seen from the right-hand side of the
head.

Each head is first rotated into a standard
coordinate system with z = 0 being the me-
dial plane and the z-axis running out through
the right ear. For convenience we also rotate
the head around the z-axis so that the z-axis
runs out through the nose and the y-axis runs
through the top of the head.

We now want to extract the profile seen
when looking along the z-axis. There are two
natural ways this profile can can be defined and
extracted:

1. calculate the intersection of the head with
z = 0 (intersection profile);

2. calculate the boundary of the shadow cast
by light rays parallel to the z-axis onto
a plane parallel to z = 0 lying entirely
behind the surface (shadow boundary or
silhouette boundary).

If the head is perfectly symmetrical about z =
0, then both methods will give the same re-
sults. However the second method is generally

(a) Apparent Con-
tour

(b) Boundary

Figure 2: The apparent contour (a) and
shadow boundary (b) of a head viewed from
the side.

less sensitive to errors in selecting the medial
plane. In particular translating the head along
the z-axis does not change the shadow bound-
ary. We use the second method in this paper.

To find the shadow boundary we first cal-
culate the apparent contour [9]. Let x =
(z,y,2z) € R® be a point on the surface with
normal n and let 1 be the direction of the light
rays. If 1 - n = 0 then x is said to lie on the
apparent contour. In other words x is on the
apparent contour if one of the light rays parallel
to l is tangent to the surface at x. Calculating
the apparent contour is a local problem which
just needs a test on the adjacent vertices; the
surface normals do not need to be calculated
and the apparent contour can be calculated in
linear time.

Once the points on the apparent contour
for I = (0,0,1) have been found we paral-
lel project them onto z = 0 by the mapping
7:(z,y,2) — (¢,y,0). The resultant set, Fig-
ure 2a, consists of the shadow boundary plus
some other structure. The boundary, figure 2b,
can be easily extracted from this data. Calcu-
lating the apparent contour beforehand greatly
reduces the time taken to calculate the bound-
ary. Our method retains the exact locations
of points on the profile which would be lost
if pixel-based mathematical morphology tech-
niques were used.



Figure 3: The landmarks used, X indicates bi-
tangent landmarks, ¢ indicates first-stage land-
marks and e indicate second-stage landmarks.
The two bi-tangent lines are also shown.

4 Finding Landmarks

To calculate a set of landmarks on the profile
a hierarchical scheme based on bi-tangents and
distances from lines is used.

First the bi-tangent lines connecting the
forehead and nose, and the nose and chin are
found. The four points of bi-tangency are con-
nected by three line segments. For each seg-
ment we then find those points on the profile
which are local extremals of distances from the
line (both maxima and minima). This strategy
gives us points at the top, bottom and tip of the
nose, points on the top and bottom lips, a point
between the lips and one between the lower lip
and chin. We call these first-stage landmarks.
We then consider the line joining successive bi-
tangent points and first-stage landmarks and
find the points which are furthest away from
these lines. We call these second-stage land-
marks and they gives us more detail for the
forehead and nose. Finally we thin out some
of the artificial extrema by hand to get a set
common to all subjects. This set is shown in
figure 3 and consists of 14 landmarks.

Whilst the points of bi-tangency can be sen-
sitive to slight changes in the profile the subse-
quent points are more stable. If 66 is the error
in the angle of the bi-tangent and « is the cur-
vature at our landmark, then the error in po-

sition is approximately %50. As our first-stage
landmarks tend to be near points of high cur-
vature, we see that errors in positions will be
small. Furthermore the errors in the angles of
lines joining the first-stage landmarks will typ-
ically be much less than 66, so we also expect
good accuracy for second-stage landmarks.

Calculating landmarks in this way is inde-
pendent of the orientation of the head; thus
our method does not require a notion of “up-
right”, a concept which we have found to be
quite subjective.

Our method also avoids the problems asso-
ciated with calculating curvature-based land-
marks (inflections and local extremals of curva-
ture (vertices)). One method for finding these
landmarks would be to fit a B spline in two
dimensions, smooth it by a Gaussian kernel,
calculate the curvature and its derivative and
look for zero crossing of each which would give
us inflections and vertices respectively. The
position and number of such landmarks would
be dependent on the amount of smoothing ap-
plied, and high levels of smoothing would be
required to get a consistent set of landmarks
for all individuals. When the profile contains
nearly straight or nearly circular segments, as
can sometimes be found in the nose and nasal
regions, the value of curvature is almost con-
stant, and finding consistent curvature-based
landmarks becomes harder. Campos [2] has
tackled some of these problems by working in
scale space.

Our method of finding landmarks should ex-
tend to three dimensions. Instead of working
with bi-tangent lines, tri-tangent planes could
be used. Finding maximally distant points
will, however, present some problems as the
maximally distant point will not always lie un-
der the triangle of tri-tangent points.

5 Analysing Growth

Once we have a set of landmarks we can use
Generalised Procrustes Analysis and Principal
Component Analysis to look at the changes in
size and shape of the profile as the subjects



age. Here shape is defined as all the geomet-
rical information about an object when loca-
tion, scale and rotational effects are filtered
out. First we use Procrustes Analysis to factor
out the size, translation and rotation compo-
nents. This gives a set of tangent space coordi-
nates representing shape. We then add in the
size again and perform Principal Component
Analysis to pick out the changes in size and
shape.

The two-dimensional structure of the pro-
files allows us to get a representation of average
shape by solving a complex eigenvalue problem
[10]. For higher dimensions other techniques
need to be used. Let {z; = (zi1,...,2ix) €
CF : 1 < i < m} be a set of m configu-
rations representing m profiles. The compo-
nents of z; are the positions of the k land-
marks on the i-th profile expressed as com-

plex numbers. Here k& = 14. Let the centre
of z; be zZ; = %Zle z;; € C and the size,
s; be given by s? = %Zle |zi; — >, Now

let w; = (w;1,...,wy) € CF be the centred,
rescaled version of z;, with w;; = (z;; — Z)/s:.
The w; represents the shape plus orientation
of our profiles. Let T = } 7".w,w}, denote
a complex covariance matrix (w* is the trans-
pose of the complex conjugate of w). This has
a dominant eigenvector i € C* which repre-
sents the mean shape of all the profiles. This
is independent of orientations in R? of the in-
dividual profiles. The deviation in shape of
each profile from the mean is represented by
the Procrustes tangent coordinates:

vi = e (I — pi)wi,

where 0; = arg(ft*w;). Although v, is a k-
dimensional complex vector, linear constraints
mean that it lies in a (2k — 4)-dimensional
real plane. Define the shape and size tan-
gent coordinates for each profile by u;, =
(Re(v;), Im(v;),log(s;)) € R*¥1. These lie in
a 2k — 3 dimensional plane.

We perform (real) Principal Component
Analysis on the shape and size tangent coor-
dinates {u;}, to find the most important vari-
ations in the shape and size of the profiles.

1st vs 2nd principal component scores

Second principal component score

T T T T
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Figure 4: The first and second principal com-
ponent scores for five subjects at various ages.

The tangent coordinates are grouped by sub-
ject and the within group covariance matrix
calculated. The eigenvectors of this matrix are
used as the basis for the Principal Component
Analysis. In practice we found there was little
difference between using within-group riance
matrix and the full covariance matrix. The
first principal component (PC) was found to
account for 75 percent of the total variability.
Figure 4 shows the first and second principal
component scores for each profile. The lines
connect the different profiles for the same per-
son at successive ages, and the number by each
point is the age. In all there are five subjects
with 3, 4, 6, 7 and 8 scans respectively. No-
tice how the first PC score tends to increases
with age. This is graphically illustrated in
Figure 5 which shows the first principal com-
ponent score plotted against age. There is a
strong correlation of 0.78 between age and the
first PC score. In a few places the first PC
score decreases with age. This effect is caused
by a variety of factors: the subject pursing the
lips on one day and not on the other; artifacts
adding by the scanning process and errors in
calculating the medial plane and landmarks.
Figure 6 shows the first mode of variation,

with the mean profile in the middle, and the
43 standard deviations shifted to the left and
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Figure 5: The age of a subject plotted against
the first principal component scores.

right The most important change is seen in
size, but there is also some change in shape
as well. In particular the nose becomes pro-
portionately larger with age and the bridge of
the nose lengthens. The nasion region at the
top of the nose also becomes less curved with
age. There is little change around the mouth,
and a slight drop in the chin with age. The
forehead appears to slope back with age, but
this may be an artifact caused by the point of
bi-tangency shifting as the nose grows. Apart
from the changes in the forehead, these findings
confirm the observations made by anatomists
mentioned in the introduction.

6 Conclusions

We have discussed a way for representing the
size and shape of the profile of the human face
and a method for analysing its growth. The re-
sults show that a large proportion of the change
in size and shape with growth can be explained
by the first principal component. Further, our
interpretations are also consistent with those
of anatomists. We intend to extend this work
to look at the full 3D shape of the face. All the
algorithms discussed should generalise to three
dimensions.

Our current model has so far only looked

The change in shape and size with the first principal component
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Figure 6: The first mode of variation (£3 sd).
For clarity the three profiles have be shifted
along the z-axis.

at a simple one-dimensional model of growth.
Further work is needed to take account of the
differences between male and female faces, the
differences between the major facial types, and
the variations, with age, in the rates of growth
of different parts of the face. In particular there
is a need for better methods for the quantifica-
tion of shape change.

More work is needed in the landmark iden-
tification. The points found are sensitive to
errors in the scanning process and biological
variability. These errors can lead to less than
optimal registration, and errors in the PCA.
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