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ections. The boundaryof the silhouette as viewed from the side isextracted. Landmarks are found using bi-tangent lines and extremals of distance. Arepresentation of size and shape is found us-ing Procrustes Analysis. Principal Compo-nent Analysis is used to examine how sizeand shape varies with growth. Promisingearly results are presented.Keywords: Shape Analysis, Facial Growth, Reg-istration, Iterative Closest Point Algorithm, Pro-crustes Analysis1 IntroductionIn this paper we will discuss a semi-automaticmethod for analysing growth of faces andpresent some preliminary results. We will con-centrate on landmarks lying on the medialplane which separates the left and right sidesof the face. The general scheme we will followis: �nd the plane of symmetry (Section 2); ex-tract the pro�le (x3); �nd a set of homologouslandmarks (x4); use Procrustes Analysis andPrincipal Component Analysis to analyse thesize and shape information (x5).

We have obtained a set of laser scans [12]from a number of individuals with between twoand eight scans per subject taken at ages be-tween 5 and 15. Each scan consists of about30,000 3D points arranged as a mesh of quadri-laterals. For the purpose of this paper we doa preliminary analysis of the scans of �ve indi-viduals (a total of 28 scans in all).The study of the human face presents anumber of challenges to shape analysis due tothe wide variation in shape between subjectsand the fact that di�erent parts grow at dif-ferent rates. Furthermore, �nding landmarkson the face is a non trivial process, and theanatomical landmarks are not always suitablefor computer-based visualisation systems.The face has been well-studied byanatomists, and there is a vast literatureon the subject. Of particular interest are thefollowing. Enlow and Hans [4, Ch. 8] whichdescribes the major types of head forms andpatterns of growth. Farkas and colleagueshave written a series of articles [5] describinghow the mean distance between landmarkschanges with age. Feik and Glover [6] reviewsome of the major �ndings about growth ofthe head. For children between 5 and 15,these works conclude that there is considerablegrowth in the nose, less growth in the jaw,and very little in the lips and forehead. Wewill examine how well these conclusions aresupported by our results.



The statistical analysis of faces dates backto Galton. In his earlier work [7] he looked atvariations in the positions of various landmarkswith respect to a �xed base line. His later work[8] classi�ed segments between landmarks of apro�le according to a number of prototypes.Much work has also been done in the statisticalanalysis of shape. A detailed introduction tothe subject can be found in [3].2 Finding the Medial PlaneIn this section we describe a method for �ndingthe medial plane of a head. This is the planewhich runs vertically down through the noseseparating the left and right sides of the head.We use a version of the Iterative Closest Pointalgorithm (ICP) to �nd a sequence of planeseach of which is a closer approximation to themedial plane. See [1] for a discussion of theICP algorithm. Our algorithm is similar to the\Head-in-the-Hat" algorithm of Pelizzari andChen [13].Let X = fxi 2 R3 : 1 � i � ng be a set ofpoints representing the head, with n � 30; 000.Given a plane P let RP denote the re
ectionin P . The ICP algorithm consists of a numberof steps:1. Choose an initial plane P by hand.2. For each xi 2 X de�ne yi 2 X to be theclosest point in X to RP (xi).3. Let di = kxi � yik. Let wi = 1 if di < d,wi = 0 otherwise. Thus di is approxi-mately twice the distance from xi to P ,and d is chosen to be twice the width of thenose. If either xi or yi lies on the bound-ary of the polygonization of the head thenwi is also set to zero.4. Find the plane Q which minimises1Pwi nXi=1wi jxi �RQ(yi)j2 ;over Q.

Figure 1: The initial hand estimate of the me-dial plane (thin line), and the �nal estimateafter ICP (thicker line).5. Set P = Q and repeat steps 2-5 until con-vergence.In practice steps 2-5 are repeated thirty times.This gave a good convergence on all the sub-jects tested.The slowest part of the algorithm is step 2which �nds the closest points X for each pointin RP (xi). A simple minded approach calcu-lates the distance to every point in the set. Aswe have about 30,000 points for each face, thiscan take a considerable time. This step canbe speeded up by about ninety-fold by using ageometric hash table consisting of a 7 � 7 � 7array of boxes. Most of the time we just needto to check the distances to points lying insidejust one of these boxes.One side of the head is normally slightlylarger than the other so using an unweightedsum in step 4 would result in a medial planewhich is shifted a little to one side. Using theweighting function in step 3 largely eliminatesthis problem. Testing for points on the bound-ary eliminates problems when there are holesin the data.A least squares technique is used to minimisethe sum in step 4. We follow the work Mardiaet. al. [11] who look at the equivalent prob-



lem of re
ections in planes through the origin.Write the plane Q as ax + by + cz = d witha = (a; b; c)T a unit length vector. The re-
ection of a point x is RQ(x) = x + 2(d �aTx)a. The sum in step 4 is minimised whena is the solution of the eigenvalue problem(C �mmT)a = �a with minimum eigenvalueand d = 12mTa. Here C is the covariance-like matrix Piwi(xiyTi + yixTi )=(2Pi wi) andm =Pi(wixi + yi)=(2Pi wi).Figure 1 shows the results of the ICP al-gorithm. The thin line is our original handestimate of the medial plane and the thickerline is the estimate after ten iterations. Thehand-estimate was chosen poorly to illustratethe beni�cial e�ects of the algorithm; we cansee that the �nal result is much closer to whatwe expect the medial plane to be.3 Calculating Pro�lesWe now simplify the problem to a two dimen-sional one by calculating the pro�le of the sur-face as seen from the right-hand side of thehead.Each head is �rst rotated into a standardcoordinate system with z = 0 being the me-dial plane and the z-axis running out throughthe right ear. For convenience we also rotatethe head around the z-axis so that the x-axisruns out through the nose and the y-axis runsthrough the top of the head.We now want to extract the pro�le seenwhen looking along the z-axis. There are twonatural ways this pro�le can can be de�ned andextracted:1. calculate the intersection of the head withz = 0 (intersection pro�le);2. calculate the boundary of the shadow castby light rays parallel to the z-axis ontoa plane parallel to z = 0 lying entirelybehind the surface (shadow boundary orsilhouette boundary).If the head is perfectly symmetrical about z =0, then both methods will give the same re-sults. However the second method is generally

(a) Apparent Con-tour (b) BoundaryFigure 2: The apparent contour (a) andshadow boundary (b) of a head viewed fromthe side.less sensitive to errors in selecting the medialplane. In particular translating the head alongthe z-axis does not change the shadow bound-ary. We use the second method in this paper.To �nd the shadow boundary we �rst cal-culate the apparent contour [9]. Let x =(x; y; z) 2 R3 be a point on the surface withnormal n and let l be the direction of the lightrays. If l � n = 0 then x is said to lie on theapparent contour. In other words x is on theapparent contour if one of the light rays parallelto l is tangent to the surface at x. Calculatingthe apparent contour is a local problem whichjust needs a test on the adjacent vertices; thesurface normals do not need to be calculatedand the apparent contour can be calculated inlinear time.Once the points on the apparent contourfor l = (0; 0; 1) have been found we paral-lel project them onto z = 0 by the mapping� : (x; y; z)! (x; y; 0). The resultant set, Fig-ure 2a, consists of the shadow boundary plussome other structure. The boundary, �gure 2b,can be easily extracted from this data. Calcu-lating the apparent contour beforehand greatlyreduces the time taken to calculate the bound-ary. Our method retains the exact locationsof points on the pro�le which would be lostif pixel-based mathematical morphology tech-niques were used.



Figure 3: The landmarks used, � indicates bi-tangent landmarks, � indicates �rst-stage land-marks and � indicate second-stage landmarks.The two bi-tangent lines are also shown.4 Finding LandmarksTo calculate a set of landmarks on the pro�lea hierarchical scheme based on bi-tangents anddistances from lines is used.First the bi-tangent lines connecting theforehead and nose, and the nose and chin arefound. The four points of bi-tangency are con-nected by three line segments. For each seg-ment we then �nd those points on the pro�lewhich are local extremals of distances from theline (both maxima and minima). This strategygives us points at the top, bottom and tip of thenose, points on the top and bottom lips, a pointbetween the lips and one between the lower lipand chin. We call these �rst-stage landmarks.We then consider the line joining successive bi-tangent points and �rst-stage landmarks and�nd the points which are furthest away fromthese lines. We call these second-stage land-marks and they gives us more detail for theforehead and nose. Finally we thin out someof the arti�cial extrema by hand to get a setcommon to all subjects. This set is shown in�gure 3 and consists of 14 landmarks.Whilst the points of bi-tangency can be sen-sitive to slight changes in the pro�le the subse-quent points are more stable. If �� is the errorin the angle of the bi-tangent and � is the cur-vature at our landmark, then the error in po-

sition is approximately 1���. As our �rst-stagelandmarks tend to be near points of high cur-vature, we see that errors in positions will besmall. Furthermore the errors in the angles oflines joining the �rst-stage landmarks will typ-ically be much less than ��, so we also expectgood accuracy for second-stage landmarks.Calculating landmarks in this way is inde-pendent of the orientation of the head; thusour method does not require a notion of \up-right", a concept which we have found to bequite subjective.Our method also avoids the problems asso-ciated with calculating curvature-based land-marks (in
ections and local extremals of curva-ture (vertices)). One method for �nding theselandmarks would be to �t a B spline in twodimensions, smooth it by a Gaussian kernel,calculate the curvature and its derivative andlook for zero crossing of each which would giveus in
ections and vertices respectively. Theposition and number of such landmarks wouldbe dependent on the amount of smoothing ap-plied, and high levels of smoothing would berequired to get a consistent set of landmarksfor all individuals. When the pro�le containsnearly straight or nearly circular segments, ascan sometimes be found in the nose and nasalregions, the value of curvature is almost con-stant, and �nding consistent curvature-basedlandmarks becomes harder. Campos [2] hastackled some of these problems by working inscale space.Our method of �nding landmarks should ex-tend to three dimensions. Instead of workingwith bi-tangent lines, tri-tangent planes couldbe used. Finding maximally distant pointswill, however, present some problems as themaximally distant point will not always lie un-der the triangle of tri-tangent points.5 Analysing GrowthOnce we have a set of landmarks we can useGeneralised Procrustes Analysis and PrincipalComponent Analysis to look at the changes insize and shape of the pro�le as the subjects



age. Here shape is de�ned as all the geomet-rical information about an object when loca-tion, scale and rotational e�ects are �lteredout. First we use Procrustes Analysis to factorout the size, translation and rotation compo-nents. This gives a set of tangent space coordi-nates representing shape. We then add in thesize again and perform Principal ComponentAnalysis to pick out the changes in size andshape.The two-dimensional structure of the pro-�les allows us to get a representation of averageshape by solving a complex eigenvalue problem[10]. For higher dimensions other techniquesneed to be used. Let fzi = (zi1; : : : ; zik) 2Ck : 1 � i � mg be a set of m con�gu-rations representing m pro�les. The compo-nents of zi are the positions of the k land-marks on the i-th pro�le expressed as com-plex numbers. Here k = 14. Let the centreof zi be �zi = 1k Pkj=1 zij 2 C and the size,si be given by s2i = 1kPkj=1 jzij � �zij2. Nowlet wi = (wi1; : : : ; wik) 2 Ck be the centred,rescaled version of zi, with wij = (zij � �zi)=si.The wi represents the shape plus orientationof our pro�les. Let T = Pmi=iwiw�i , denotea complex covariance matrix (w� is the trans-pose of the complex conjugate of w). This hasa dominant eigenvector �̂ 2 Ck which repre-sents the mean shape of all the pro�les. Thisis independent of orientations in R2 of the in-dividual pro�les. The deviation in shape ofeach pro�le from the mean is represented bythe Procrustes tangent coordinates:vi = e�i�i(I � �̂�̂�)wi;where �i = arg(�̂�wi). Although vi is a k-dimensional complex vector, linear constraintsmean that it lies in a (2k � 4)-dimensionalreal plane. De�ne the shape and size tan-gent coordinates for each pro�le by ui =(Re(vi); Im(vi); log(si)) 2 R2k+1. These lie ina 2k � 3 dimensional plane.We perform (real) Principal ComponentAnalysis on the shape and size tangent coor-dinates fuig, to �nd the most important vari-ations in the shape and size of the pro�les.
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Figure 4: The �rst and second principal com-ponent scores for �ve subjects at various ages.The tangent coordinates are grouped by sub-ject and the within group covariance matrixcalculated. The eigenvectors of this matrix areused as the basis for the Principal ComponentAnalysis. In practice we found there was littledi�erence between using within-group riancematrix and the full covariance matrix. The�rst principal component (PC) was found toaccount for 75 percent of the total variability.Figure 4 shows the �rst and second principalcomponent scores for each pro�le. The linesconnect the di�erent pro�les for the same per-son at successive ages, and the number by eachpoint is the age. In all there are �ve subjectswith 3, 4, 6, 7 and 8 scans respectively. No-tice how the �rst PC score tends to increaseswith age. This is graphically illustrated inFigure 5 which shows the �rst principal com-ponent score plotted against age. There is astrong correlation of 0.78 between age and the�rst PC score. In a few places the �rst PCscore decreases with age. This e�ect is causedby a variety of factors: the subject pursing thelips on one day and not on the other; artifactsadding by the scanning process and errors incalculating the medial plane and landmarks.Figure 6 shows the �rst mode of variation,with the mean pro�le in the middle, and the�3 standard deviations shifted to the left and
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Figure 5: The age of a subject plotted againstthe �rst principal component scores.right The most important change is seen insize, but there is also some change in shapeas well. In particular the nose becomes pro-portionately larger with age and the bridge ofthe nose lengthens. The nasion region at thetop of the nose also becomes less curved withage. There is little change around the mouth,and a slight drop in the chin with age. Theforehead appears to slope back with age, butthis may be an artifact caused by the point ofbi-tangency shifting as the nose grows. Apartfrom the changes in the forehead, these �ndingscon�rm the observations made by anatomistsmentioned in the introduction.6 ConclusionsWe have discussed a way for representing thesize and shape of the pro�le of the human faceand a method for analysing its growth. The re-sults show that a large proportion of the changein size and shape with growth can be explainedby the �rst principal component. Further, ourinterpretations are also consistent with thoseof anatomists. We intend to extend this workto look at the full 3D shape of the face. All thealgorithms discussed should generalise to threedimensions.Our current model has so far only looked
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Figure 6: The �rst mode of variation (�3 sd).For clarity the three pro�les have be shiftedalong the x-axis.at a simple one-dimensional model of growth.Further work is needed to take account of thedi�erences between male and female faces, thedi�erences between the major facial types, andthe variations, with age, in the rates of growthof di�erent parts of the face. In particular thereis a need for better methods for the quanti�ca-tion of shape change.More work is needed in the landmark iden-ti�cation. The points found are sensitive toerrors in the scanning process and biologicalvariability. These errors can lead to less thanoptimal registration, and errors in the PCA.7 AcknowledgementsWe are grateful to EPSRC for a grant to carryout this work. We would also like to thankFred Bookstein for helpful comments.References[1] P. J. Besl and N. D. McKay. A Method forRegistration of 3-D Shapes. IEEE Trans-actions on Pattern Analysis and MachineIntelligence, 14(2):239{255, Febuary 1992.



[2] J. C. Campos, A. D. Linney, and J. P.Moss. The analysis of facial pro�les usingscale space techniques. Pattern Recogni-tion, 26(6):819{824, 1993.[3] I. L. Dryden and K. V. Mardia. StatisticalShape Analysis. Wiley, 1998.[4] D. H. Enlow and M. G. Hans. Essentialsof Facial Growth. Saunders, Philadelphia,1996.[5] L. G. Farkas, J. C. Posnick, and T. M.Hreczko. Growth and development of re-gional units in the head and face basedon anthropometric measurements. CleftPalate-Craniofacial Journal, 29:301{302,1992.[6] S. A. Feik and J. E. Glover. Growth ofchildren's faces. In J. G. Clement andD. L. Ranson, editors, Craniofacial Identi-�cation in Forensic Medicine, pages 203{224. Arnold, 1998.[7] F. Galton. Classi�cation of portraits. Na-ture, 76:617{618, 1907.[8] F. Galton. Numeralised pro�les for classi-�cation and recognition. Nature, 83:127{130, 1910.[9] P. J. Giblin. Apparent contours: an out-line. Phil. Trans. Royal Society London,A, 356:1087{1102, 1998.[10] J. T. Kent. The complex Bingham dis-tribution and shape analysis. Journalof the Royal Statistical Society, Series B,56(2):285{299, 1994.[11] K. V. Mardia, F. L. Bookstein, and I. J.Moreton. Statistical assessment of bilat-eral symmetry of shape. Biometrika, toappear, 1999.[12] J. P. Moss, A. D. Linney, S. R. Grindrod,and C. A. Moss. A laser scanning sys-tem for the measurement of facial surfacemorphology. Optics and Lasers in Engi-neering, 10:179{90, 1989.

[13] C. A. Pelizzari, G. T. Y. Chen, D. R.Spelbring, R. R. Wechselbaum, and C-T.Chen. Accurate three-dimensional regis-tration of CT, PET, and/or MR imagesof the brain. J. Computer Assisted To-mography, 13:20{26, 1989.


