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Abstract

Growth models for shape are investigated for landmark data. First the data are given
a Euclidean representation using Procrustes tangent coordinates. Roughness penalties are
defined for directions of growth in space and for rates of growth in time. These penalties
are then combined to give a joint space-time roughness penalty. Transforming the data to
bases defined by principal warps in space and time facilitates model specification and fitting,
both for parametric and nonparametric models. A generalized cross validation criterion can
be used to choose a smoothing parameter for a nonparametric smoothing spline-type model.
Fitted models can be interpreted either just in terms of the finite set of landmarks at the finite
set of data times, or in terms of a deformation of space which varies continuously through
time. The methods are illustrated on a set of rat data.

1 Introduction

The purpose of this paper is to construct growth models for the shapes of biological objects. For
simplicity we work with objects in M = 2 dimensions, but the methodology extends to higher
dimensions. The basic approach is to construct and fit a time-varying deformation ofRM which
in particular deforms the object of interest. There are two main ingredients in this approach:

(a) a roughness penalty on functions in space, specifying the smoothness of possible direc-
tions of growth;

(b) a roughness penalty on functions in time, specifying the smoothness of possible rates of
growth.

These penalties, together with fixed reference sets of landmarks and times, respectively, deter-
mine finite dimensional spaces of functions of space and time. The direct product of these spaces
will form the framework for our modelling approach in space-time.

Since growth is usually dominated by increasing size, it is helpful to look at changes in size
and shape separately. For the purposes of this paper we ignore changes in size and limit atten-
tion to changes in the shape of the object. Recall that the “shape” of an object comprises all the
geometric information about the object except for location, rotation and size (e.g. Dryden and
Mardia, 1998).

This paper extends earlier work by Morris et al. (1999a,b, 2000) and Kent et al. (2000).
The outline of the paper is as follows. In Section 2, we describe how to represent the data in a
form suitable for fitting growth models. In Section 3 roughness penalties on space and time are�This paper is dedicated to F. James Rohlf on the occasion of his 65th birthday.



constructed and combined to give a joint space-time penalty. Also, a transformation of the data
is given which facilitates the fitting of these smoothing models. Section 4 discusses various sorts
of parametric and nonparametric models and illustrates their application on a set of growth data
for rat skulls.

2 Representing the data

Suppose landmark data are available on different individuals at a common set of ages, taking the
form of a 4-way array fxnkmhg wheren = 1; : : : ; N labels different individuals, k = 1; : : : ;K labels different landmarks,m = 1; : : : ;M labels different coordinates, h = 1; : : : ;H labels different times t1; : : : ; tH .

It is convenient to represent these data as a collection fxnhg of K � M matrices. In general
bold-face will be reserved for K �M matrices.

Since the shape of an object determines its coordinates only up to a similarity transformation,
it is necessary to reduce the data to just the shape information. We do this using Procrustes tan-
gent coordinates about a centered and scaled “mean” configuration�, say. A convenient choice
for� is the generalized Procrustes estimate based on allNH configurations, but the exact choice
does not matter. Let vnh(K �M) denote the (centered rather than Helmertized) Procrustes tan-
gent coordinates of the data xnh.

Next, assuming all N individuals are i.i.d., we take a sample average of the Procrustes co-
ordinates to get averaged data �vh. It is this form of the data to which we wish to fit a growth
model. For this purpose it is convenient to rewrite the data as a KM �H matrix W , say, withhth column of W defined by stacking the M = 2 columns of �vh on top of one another.

3 Details of roughness penalties

For simplicity of presentation, we focus on two specific examples of roughness penalties, though
other choices are also possible.

For a real-valued function of time,  (t); t 2 R1, we shall use the cubic spline penaltyQ1( ) = Z (d2 dt2 )2dt (3.1)

where the integral is over the whole line. Note that the nullspace of this penalty is 2-dimensional,
spanned by the functions 1; t. Let t1; : : : ; tH denote the common set of times at which the data
are observed. Associated with these times is anH�H symmetric positive semidefinite “bending
energy” matrixB, say, of rankH � 2. The eigenvectors and eigenvalues ofB play an important
role. Associated with each standardized eigenvector 
, say, ofB is a function b(t), say, such that

1. b(th) = 
h, so that b interpolates the values in the eigenvector, and

2. b minimizes the penalty Q1(b) over all such interpolating functions, and Q1(b) = �, say,
the corresponding eigenvalue.

The eigenvectors corresponding to the nonzero eigenvalues are called “principal warp vectors”
and the corresponding functions are called “principal warp functions”.



For our modelling purposes it is useful to combine all the eigenvectors (excluding the con-
stant vector) into anH� (H�1) column orthonormal matrixG, say. Denote the corresponding
eigenvalues of B by �h; h = 1; : : : ;H � 1, arranged in nondecreasing order. Note �1 = 0. The
columns of G roughly correspond to the effects of orthogonal polynomials at the data times.

A similiar construction can be carried out in space. For a real-valued function in M = 2
spatial dimensions, �(s); s 2 R2, we shall use the the thin plate spline penalty,Q2(�) = Z (@2�@s21 )2 + 2( @2�@s1@s2 )2 + (@2�@s22 )2 ds (3.2)

where the integral is over all of R2. Note that the nullspace of this penalty is 3-dimensional,
spanned by the functions 1; s[1]; s[2], where square brackets denote the coordinates of s. Letfs1; : : : ; sKg denote a fixed collection of sites in R2. (In our applications we shall use the K
rows of�.) Then aK �K bending energy matrix can be constructed with analogous properties
to the above paragraph, though this time of rank K � 3.

Since a deformation can be constructed from a pair of functions R2 ! R1, we combine
together two copies of the eigenvectors. After removing 4 degrees of freedom for the constraints
in Procrustes tangent space, we are left with a 2K�(2K�4) column orthonormal matrixF , say.
The first two columns ofF represent linear functions orthogonal to the similarity transformations
(that is, Bookstein’s “uniform” component; see Bookstein (1995) and Mardia (1995, Section 7).

The remaining columns of F come in pairs:

�
 00 
�, where 
 is a K � 1 eigenvector of the

bending energy matrix for the thin-plate spline. Also, let �2j�1 = �2j; j = 1; : : : ;K�2 denote
the corresponding eigenvalues in nondecreasing order, each listed twice. Note �1 = �2 = 0.

Then W can be written in the formW = �1TH + FAGT ; that is, F TWG = A = (ajh): (3.3)

The intercept � is of no interest and depends on the choice of �. The matrix of coefficientsA ((2K � 4) � (H � 1)) is of key importance for specifying different models. If the eigen-
vectors in F and G are interpolated to yield a pair of space-time functions (�1(s; t);�2(s; t))
then the penalty functionQ3(�1;�2) = 2Xi=1 Z �( @4�i@s21@t2 )2 + 2( @4�i@s1@s2@t2 )2 + ( @4�i@s22@t2 )2� ds dt; (3.4)

where the integral is over s 2 R2; t 2 R, reduces to2K�4Xj=1 H�1Xh=1 a2jh�j�h;
which depends just on the coefficients and the eigenvalues.

4 Various models for the rat data

We consider a set of rat growth data described and analyzed in Bookstein (1991). The data
are obtained from a two-dimensional midsagittal section of the calvarium (the skull without the
lower jaw). There is complete information on N = 18 rats at H = 8 times (or ages) on K = 8



landmarks. To facilitate the model fitting, we replace the actual age by a “pseudo-age” given by
the average centroid size at each age. For the purposes of this paper we shall ignore any differ-
ences between the individual rats.

For this rat dataset, letA = F TWG denote the 12�7 doubly rotated version of the Procrustes
tangent matrix for the mean data. The value of A is given as follows, where the rows label the
eigenvectors in space and the columns label the eigenvectors in time.

The matrix A

-0.128 0.005 -0.003 0.010 0.004 -0.003 0.003
0.012 -0.049 0.003 0.007 0.004 -0.001 -0.001
0.079 -0.008 0.013 0.003 -0.002 -0.003 0.002
0.064 -0.007 0.011 -0.001 -0.001 -0.001 0.000

-0.057 0.013 -0.005 -0.004 0.001 0.002 0.001
-0.004 0.002 0.002 -0.003 -0.002 0.000 -0.001
0.016 0.003 -0.002 0.000 0.001 -0.001 -0.003
0.021 -0.006 0.004 -0.003 -0.001 0.000 -0.001
0.006 -0.008 -0.009 -0.004 -0.001 0.003 0.002

-0.013 -0.001 -0.001 0.001 -0.001 0.000 0.000
0.018 -0.003 -0.002 -0.001 0.001 0.000 -0.002

-0.037 0.003 -0.002 0.000 0.000 0.000 -0.001

Some important models and their application to the rat data are described below, with the
fitted parameter matrix denoted Â. For each fitted model, the residual sum of squares (RSS)
comparing a given model to the full model is quoted. A selection of fitted models is plotted in
Figure 1.

1. Parametric models, full rank. These models can be specified in terms of the nonzero en-
tries in Â. For example, the notation [1:6,1:2] will mean that the block of entries specified
by the first 6 rows and first two columns will be allowed to be nonzero.

(a) full = [1:12, 1:7]. (RSS= 0) In this case there is no data reduction (other than the
averaging over individuals in the first place). See Figure 1(a).

(b) linlin = [1:2,1]. (RSS = 0.01986) This is the simplest possible model, linear in space
(a two-dimensional subspace) and linear in time (one-dimensional). Thus this model
consists of a constant growth rate in a single direction arising from a linear transfor-
mation in two dimensions. This model captures some of the main features of the
data, but fails to capture the curvature of the paths, and does not fit well at several
landmarks.

(c) fulllin = [1:12, 1]. (RSS = 0.00363) In this case there is full flexibility in growth di-
rection, but the growth trajectory is still linear in this single direction. In Figure 1(b)
we see that the main pattern of growth is captured, but the fit is not very good at the
left-hand landmarks and the curvature of the paths is not captured at all. Overall we
see that under this model the top landmarks move downwards and slightly inwards;
the bottom landmarks move up and outwards.

(d) 2quad = [1:6, 1:2]. (RSS = 0.00350) This model is specified by a pair of growth
directions (lying in the space spanned by the linear terms plus the first two principal
warps in space), one direction progressing at a linear rate and the second according



to the first principal warp in time (which is roughly like a quadratic). This model was
suggested in Kent et al. (2000), but the following model now seems preferable.

(e) sp = [1:12, 1] + [1:2, 2]. (RSS = 0.00120) This model is called “special” because the
nonzero parameter values do not form a rectangular block. It captures the curvature
in the paths through a term which is second order in time and linear in space. Figure
1(c) shows that this model yields a good fit to the data.

(f) linfull = [1:2, 1:7]. (RSS = 0.01723) This model allows growth in the two linear
directions in space, but at arbitrary rates in time. The growth paths are curved but do
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Figure 1: Fitted growth models for the rat data: (a) full, (b) fulllin, (c) sp, with the growth pat-
terns blown up by a factor of 5 for clarity. Each “*” represents a landmark of the the Procrustes
mean shape �, and each closed circle represents the position of a landmark at the initial time.
Part (d) shows the grid deformation, without an expansion factor, between the initial and final
times for the sp model.



not match the data very well.

(g) null = [1:12, 1] + [1:2, 2:7] = fulllin + linfull. (RSS = 0.00100) This is the most gen-
eral model that has 0 roughness penalty and fits the data surprisingly well. Visually
the fit is similar to the special model.

2. Parametric models, reduced rank. Start with a rectangular block of coefficients inA, take
a singular value decomposition, and retain the dominant components. The simplest such
model which fits the data well can be written as full.2 = [1:12, 1:7, 2]; i.e. take the domi-
nant 2 components of the singular value decomposition of the whole matrix A, with RSS
= 0.00045. This fitted model is very closely related to the exploratory analysis based on
two principal components in Le and Kume (2000).

3. Nonparametric. A nonparametric spline-like model can be defined by minimizing a com-
bination of a goodness of fit term plus � times the penalty term, where the minimization is
over the finite dimensional vector space generated by products of the principal warp func-
tions (including linear functions) for space and time, respectively. The terms of the fitted
model are given by the estimates âjh = ajh=(1 + ��j�h). The null model is a special
case as � ! 1. A generalized cross-validation criterion can be defined and leads to the
optimal smoothing parameter � = :00071 for which RSS = 0.00004. This value is very
small suggesting that little smoothing has taken place, so that the the nonparametric fit is
very close to the full model

Discussion

A glance at the matrix A shows that the largest values fall in the first column and the first two
entries in the second column. This observation suggests that the special parametric model will
provide a good-fitting parsimonious model, as verified by the RSS value. The null model in-
cludes the special model and yields a similar fit. Further, the reduced rank model full.2 also
captures these effects and yields a similar fit. Since the nonparametric model includes the null
model, it also gives a good fit. However, the lack of strong structure in the [3:12, 2:7] block of
data seems to lead to a small smoothness parameter � and to over-fitting of the data.

Overall the most useful fitted model seems to be the special parametric model. The growth
can be decomposed into two components: a linear (in time) growth in a general spatial direction,
together with a “quadratic” component (in time) which is restriced to a linear transformation in
space. An illustration of the deformation involved between the starting and final times under this
model is plotted (with no expansion factor) in Figure 1(d).
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