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Abstract

Growth models for shape are investigated for landmark data. First the data are given
a Euclidean representation using Procrustes tangent coordinates. Roughness penalties are
defined for directions of growth in space and for rates of growth in time. These penalties
are then combined to give ajoint space-time roughness penalty. Transforming the datato
bases defined by principa warpsin spaceand timefacilitatesmodel specification and fitting,
both for parametric and nonparametric models. A generalized cross validation criterion can
be used to choose a smoothing parameter for anonparametric smoothing spline-typemodel.
Fitted models can beinterpreted either just interms of thefiniteset of landmarksat thefinite
set of datatimes, or in terms of a deformation of space which varies continuously through
time. The methods areillustrated on a set of rat data.

1 Introduction

The purpose of this paper isto construct growth modelsfor the shapes of biological objects. For
smplicity we work with objectsin M = 2 dimensions, but the methodol ogy extends to higher
dimensions. The basic approach isto construct and fit atime-varying deformation of R which
in particular deformsthe object of interest. There are two main ingredientsin this approach:

(a) aroughness penalty on functions in space, specifying the smoothness of possible direc-
tions of growth;

(b) aroughness penalty on functionsin time, specifying the smoothness of possible rates of
growth.

These penalties, together with fixed reference sets of landmarks and times, respectively, deter-
minefinitedimensional spaces of functionsof space and time. The direct product of these spaces
will form the framework for our modelling approach in space-time.

Since growth isusually dominated by increasing size, it is helpful to look at changesin size
and shape separately. For the purposes of this paper we ignore changes in size and limit atten-
tion to changes in the shape of the object. Recall that the “shape” of an object comprisesall the
geometric information about the object except for location, rotation and size (e.g. Dryden and
Mardia, 1998).

This paper extends earlier work by Morris et a. (1999ab, 2000) and Kent et a. (2000).
The outline of the paper is as follows. In Section 2, we describe how to represent the datain a
form suitable for fitting growth models. In Section 3 roughness penalties on space and time are
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constructed and combined to give ajoint space-time penalty. Also, atransformation of the data
isgiven which facilitatesthefitting of these smoothing models. Section 4 discusses various sorts
of parametric and nonparametric models and illustrates their application on aset of growth data
for rat skulls.

2 Representingthedata

Suppose landmark data are available on different individual sat acommon set of ages, taking the
form of a4-way array {z,xm,} Where

n=1,...,N labelsdifferentindividuals, % =1,..., K labelsdifferent landmarks,
m=1,..., M labelsdifferent coordinates, & =1,...,H labelsdifferenttimest,,... ,tx.

It is convenient to represent these data as a collection {x,,;, } of K x M matrices. In genera
bold-facewill bereserved for K x M matrices.

Sincethe shape of an object determinesitscoordinatesonly up to asimilarity transformation,
it isnecessary to reduce the data to just the shape information. We do this using Procrustes tan-
gent coordinates about a centered and scaled “mean” configuration g, say. A convenient choice
for p isthegeneralized Procrustes estimate based onall N H configurations, but the exact choice
does not matter. Let v,,,( K x M) denote the (centered rather than Helmertized) Procrustestan-
gent coordinates of the datax.,,.

Next, assuming all NV individuals arei.i.d., we take a sample average of the Procrustes co-
ordinates to get averaged data v,. It isthisform of the data to which we wish to fit a growth
model. For this purpose it is convenient to rewritethedataasa K M x H matrix W, say, with
hth column of W defined by stacking the M = 2 columns of @, on top of one another.

3 Detailsof roughnesspenalties

For smplicity of presentation, we focus on two specific examples of roughness penalties, though
other choices are also possible.
For areal-valued function of time, ¢(t), t € R*, we shall use the cubic spline penalty

)= [(Ghra (3

wheretheintegral isover thewholeline. Notethat the nullspace of thispenalty is2-dimensional,
gpanned by the functions1,¢. Let ¢4, ... , ¢z denote the common set of times at which the data
areobserved. Associated withthesetimesisan H x H symmetric positive semidefinite*bending
energy” matrix B, say, of rank H — 2. The eigenvectors and eigenvalues of B play an important
role. Associated with each standardized eigenvector v, say, of B isafunction b(¢), say, such that

1. b(tn) = i, S0 that b interpolates the values in the eigenvector, and

2. b minimizesthe penalty ¢)1(b) over all such interpolating functions, and Q(b) = 3, say,
the corresponding eigenvalue.

The eigenvectors corresponding to the nonzero eigenvalues are called “ principal warp vectors’
and the corresponding functions are called “principal warp functions”.



For our modelling purposesit is useful to combine all the eigenvectors (excluding the con-
stant vector) intoan H x (H — 1) column orthonormal matrix G, say. Denote the corresponding
eigenvaluesof Bby 8,, h =1,...,H — 1, arranged in nondecreasing order. Note 3; = 0. The
columns of GG roughly correspond to the effects of orthogonal polynomials at the data times.

A similiar construction can be carried out in space. For areal-valued functionin M = 2
spatial dimensions, ¢(s), s € R?, we shall use the the thin plate spline penalty,
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where the integral is over al of R2 Note that the nullspace of this penalty is 3-dimensional,
spanned by the functions 1, s[1], s[2], where square brackets denote the coordinates of s. Let
{s1,...,sx} denote afixed collection of sitesin R (In our applications we shall use the K
rowsof p.) Thena K x K bending energy matrix can be constructed with anal ogous properties
to the above paragraph, though this time of rank K — 3.

Since a deformation can be constructed from a pair of functions R? — R?, we combine
together two copies of the eigenvectors. After removing 4 degrees of freedom for the constraints
in Procrustestangent space, weareleftwitha2 K x (2K —4) column orthonormal matrix £, say.
Thefirst two columnsof F represent linear functionsorthogonal to the similarity transformations
(that is, Bookstein’s “uniform” component; see Bookstein (1995) and Mardia (1995, Section 7).
Y
0
bending energy matrix for the thin-plate spline. Also, let az;_1 = o5, 7 =1,... , K —2 denote
the corresponding eigenvaluesin nondecreasing order, each listed twice. Note a; = a, = 0.

Then W can be written in the form

The remaining columns of F' come in pairs: , Wwherey isa K x 1 eigenvector of the

W =vih + FAGY, thatis, FTWG = A = (a;3). (3.3)
The intercept v is of no interest and depends on the choice of g. The matrix of coefficients
A((2K — 4) x (H — 1)) is of key importance for specifying different models. If the eigen-

vectorsin F' and G are interpolated to yield a pair of space-time functions (®4(s, t), ®2(s,t))
then the penalty function
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wheretheintegral isover s € R?, ¢ € R, reducesto

2K—-4 H-1
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which depends just on the coefficients and the eigenval ues.

4 Variousmodelsfor therat data

We consider a set of rat growth data described and analyzed in Bookstein (1991). The data
are obtained from atwo-dimensional midsagittal section of the calvarium (the skull without the
lower jaw). Thereis completeinformationon N = 18 ratsat H = 8 times (or ages) on K = 8



landmarks. To facilitate the model fitting, we replace the actual age by a*“pseudo-age” given by
the average centroid size at each age. For the purposes of this paper we shall ignore any differ-
ences between the individual rats.

For thisrat dataset, let A = FTW G denotethe 12 x 7 doubly rotated version of the Procrustes
tangent matrix for the mean data. The value of A is given as follows, where the rows |abel the
eigenvectors in space and the columns label the eigenvectorsin time.

The matrix A

-0.128 0.005 -0.003 0.010 0.004 -0.003 0.003
0.012 -0.049 0.003 0.007 0.004 -0.001 -0.001
0.079 -0.008 0.013 0.003 -0.002 -0.003 0.002
0.064 -0.007 0.011 -0.001 -0.001 -0.001 0.000

-0.057 0.013 -0.005 -0.004 0.001 0.002 0.001

-0.004 0.002 0.002 -0.003 -0.002 0.000 -0.001
0.016 0.003 -0.002 0.000 0.001 -0.001 -0.003
0.021 -0.006 0.004 -0.003 -0.001 0.000 -0.001
0.006 -0.008 -0.009 -0.004 -0.001 0.003 0.002

-0.013 -0.001 -0.001 0.001 -0.001 0.000 0.000
0.018 -0.003 -0.002 -0.001 0.001 0.000 -0.002

-0.037 0.003 -0.002 0.000 0.000 0.000 -0.001

Some important models and their application to the rat data are described below, with the
fitted parameter matrix denoted A. For each fitted model, the residual sum of squares (RSS)
comparing agiven model to the full model is quoted. A selection of fitted modelsis plotted in

Figure 1.

1. Parametric models, full rank. These models can be specified in terms of the nonzero en-
triesin A. For example, the notation [1:6,1:2] will mean that the block of entries specified
by the first 6 rows and first two columns will be allowed to be nonzero.
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full = [1:12, 1:7]. (RSS= 0) In this case there is no data reduction (other than the
averaging over individuasin thefirst place). See Figure 1(a).

linlin=[1:2,1]. (RSS=0.01986) Thisisthe simplest possible model, linear in space
(atwo-dimensional subspace) and linear in time (one-dimensional). Thusthismodel
consists of aconstant growth rate in asingle direction arising from alinear transfor-
mation in two dimensions. This model captures some of the main features of the
data, but fails to capture the curvature of the paths, and does not fit well at several
landmarks.

fulllin=[1:12, 1]. (RSS=0.00363) In this case thereisfull flexibility in growth di-
rection, but the growth trajectory is still linear in thissingledirection. In Figure 1(b)
we see that the main pattern of growth is captured, but the fit is not very good at the
left-hand landmarks and the curvature of the pathsis not captured at all. Overall we
see that under this model the top landmarks move downwards and dightly inwards;
the bottom landmarks move up and outwards.

2quad = [1:6, 1:2]. (RSS = 0.00350) This model is specified by a pair of growth
directions (lying in the space spanned by the linear terms plus the first two principal
warps in space), one direction progressing at alinear rate and the second according



to thefirst principal warpin time (whichisroughly likeaquadratic). Thismodel was
suggested in Kent et al. (2000), but the following model now seems preferable.

() sp=[1:12,1] +[1:2, 2]. (RSS=0.00120) Thismodel iscalled “special” becausethe
nonzero parameter values do not form arectangular block. It captures the curvature
in the paths through aterm which is second order in time and linear in space. Figure
1(c) shows that thismodel yields agood fit to the data.

() linfull =[2:2, 1:7]. (RSS = 0.01723) This model allows growth in the two linear
directionsin space, but at arbitrary ratesin time. The growth paths are curved but do
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Figure 1: Fitted growth modelsfor the rat data: (@) full, (b) fulllin, (c) sp, with the growth pat-
terns blown up by afactor of 5 for clarity. Each “*” represents alandmark of the the Procrustes
mean shape ¢, and each closed circle represents the position of alandmark at the initial time.
Part (d) shows the grid deformation, without an expansion factor, between the initial and final
timesfor the sp model.



not match the data very well.

(9) null =[1:12, 1] +[1:2, 2:7] = fulllin + linfull. (RSS= 0.00100) Thisisthe most gen-
eral model that has O roughness penalty and fits the data surprisingly well. Visually
the fit issimilar to the special model.

2. Parametric models, reduced rank. Start with arectangular block of coefficientsin A, take
asingular value decomposition, and retain the dominant components. The ssimplest such
model which fitsthe datawell can bewritten asfull.2 =[1:12, 1:7, 2]; i.e. take the domi-
nant 2 components of the singular value decomposition of the whole matrix A, with RSS
= 0.00045. Thisfitted model is very closely related to the exploratory analysis based on
two principal componentsin Le and Kume (2000).

3. Nonparametric. A nonparametric spline-like model can be defined by minimizing acom-
bination of agoodness of fit term plus A timesthe penalty term, wherethe minimizationis
over thefinite dimensional vector space generated by products of the principal warp func-
tions (including linear functions) for space and time, respectively. The terms of thefitted
model are given by the estimates a;;, = a;,/(1 + Ae;;Bx). The null model is a specia
case as A — oo. A generaized cross-validation criterion can be defined and leads to the
optimal smoothing parameter A = .00071 for which RSS = 0.00004. This value is very
small suggesting that little smoothing has taken place, so that the the nonparametricfit is
very close to the full model

Discussion

A glance at the matrix A shows that the largest values fall in the first column and the first two
entries in the second column. This observation suggests that the special parametric model will
provide a good-fitting parsimonious model, as verified by the RSS value. The null model in-
cludes the special model and yields a smilar fit. Further, the reduced rank model full.2 also
captures these effects and yields asimilar fit. Since the nonparametric model includes the null
model, it also gives agood fit. However, the lack of strong structure in the [3:12, 2:7] block of
data seems to lead to a small smoothness parameter A and to over-fitting of the data.

Overall the most useful fitted model seems to be the specia parametric model. The growth
can be decomposed into two components: alinear (intime) growthinagenera spatial direction,
together with a“quadratic” component (in time) which isrestriced to alinear transformation in
gpace. Anillustration of the deformationinvolved between the starting and final timesunder this
model is plotted (with no expansion factor) in Figure 1(d).
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