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Abstra
t. Algebrai
 surfa
es, de�ned as the zero set of a polynomial fun
tion

in three variables, present a parti
ular problem for visualising, espe
ially if the

surfa
e 
ontains singularities. Most algorithms for 
onstru
ting a polygonization of

the surfa
e will miss the singular points. We present an algorithm for polygonizing

su
h surfa
es whi
h attempts to get a

urate representations of the singular points.

A 
lient-server approa
h, with a Java applet and a C program as ba
kend, is used

to enable the visualisation of the polygonal mesh in a web browser. This system

allows algebrai
 surfa
es to be viewed in any web browser and on any platform.

1 Introdu
tion

Algebrai
 surfa
es, de�ned as the zero set of a polynomial fun
tion in three

variables, have a long history in mathemati
s. There are many famous sur-

fa
es su
h as Steiner's Roman Surfa
e, Fig. 1(a), an immersion of the real

proje
tive plane, whi
h is represented as the algebrai
 surfa
e x

2

y

2

+ y

2

z

2

+

z

2

x

2

= 2xyz.

Algebrai
 surfa
es often 
ontain singular points, where all three partial

derivatives vanish. For example the double 
one, x

2

� y

2

� z

2

= 0, has an

A

1

singularity or node at the origin, Fig. 1(b). There are other more 
om-

pli
ated isolates singularities su
h as: x

2

y � y

3

� z

2

= 0 whi
h has a D

4

singularity, Fig. 1(
). Other surfa
es are more 
ompli
ated and 
an 
ontain

self-interse
tions, xy = 0, and degenerate lines, x

2

+ y

2

= 0. The 
ross-


ap or Whitney umbrella, x

2

z + y

2

= 0 
ontains a self interse
tion along

x = z = 0, y > 0 and a degenerate line along x = z = 0, y < 0. The

line forms the `handle' of the umbrella, Fig. 1(d). The swallowtail surfa
e,

�4z

3

y

2

� 27y

4

+16xz

4

� 128x

2

z

2

+144xy

2

z+256x

3

= 0, is even more 
om-

pli
ated and 
ontains a 
uspidal edge, Fig. 1(e). These and other examples

of algebrai
 surfa
es will be further examined in se
tion 4.

These singularities 
ause parti
ular problems for 
onstru
ting 
omputer

models of the surfa
es. Many algorithms will simply ignore the singular

points [2,10℄. However if information about singularities is in
luded from the

ground up it is possible to 
onstru
t an algorithm, des
ribed here, whi
h 
an

produ
e good 3D models of most algebrai
 surfa
es.

The surfa
es are displayed in a web-page using a Java applet whi
h uses

the JavaView library [12,13℄ to allow rotation of the surfa
e. This applet
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(a) Steiner's Roman

Surfa
e

(b) A

1

singularity (
) D

4

singularity

(d) A 
ross-
ap (e) A swallowtail

Fig. 1. Some algebrai
 surfa
es


onne
ts to a server on the Internet whi
h a
tually 
al
ulates polygonization

of the surfa
e.

The program des
ribed here has been adapted from an earlier program [8,9℄

whi
h ran as a standalone appli
ation on SGI ma
hines and used the Ge-

omview [11℄ program for visualisation. The prin
ipal improvements have been

the Java interfa
e and an improved method of �nding the polygonization 3.5.

2 The 
lient applet

The 
lient side of the system is fairly straightforward. It 
onsists of a Java

applet written using the JavaView library. It has two panels, one of whi
h

displays the surfa
e and allows the surfa
e to be rotated and s
aled using the

mouse. The other panel 
ontains an area to input the equation of the surfa
e

as well as 
ontrols for sele
ting the region spa
e in whi
h the surfa
e will be


al
ulated. Several prede�ned equations are provided. These in
lude many

well known algebrai
 surfa
e. The syntax of equations is standard TeX style

notation and allows sub-equation to be de�ned as well as allowing a symboli


di�erentiation operator and ve
tor operations. The user interfa
e is shown in

�gure 2.

A button press 
auses the surfa
e is to be 
al
ulated. A CGI-POST re-

quest, whi
h en
odes the de�ning equation and options, is sent to the server
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Fig. 2. The user interfa
e for the program

whi
h then 
al
ulates a polygonization of the surfa
e. This is then returned

to the 
lient in JavaView's JVX format. If the de�ning equation is very de-

generate, say a redu
ible equation like x

2

= 0, then the server 
an take a long

time to 
al
ulate the surfa
e. To prevent this happening a maximum 
al
u-

lation time is spe
i�ed by the user. If this time limit is ex
eeded then the


al
ulation of the surfa
e will end prematurely. Ideally an interrupt button


ould be provided to halt the 
al
ulation of the surfa
e, but this 
annot be

a
hieved using the CGI proto
ol.

Due to Java se
urity restri
tions the Java applet 
an only 
onne
t to

servers whi
h lie on the same Internet host. This makes it diÆ
ult for users to

modify the applet or in
lude it in their own software. This 
ould be over
ome

by signing the Java 
ode.

3 The server

The server takes the de�ning equation, f(x; y; z) = 0, of an algebrai
 surfa
es

and produ
es a ploygonization of the surfa
e inside a re
tangular box spe
i�ed

by the user.

The basi
 algorithm starts with a re
tangular box. Re
ursive sub-division

is used to split that box into 8 smaller boxes, the edge-lengths of the whi
h are

half those of the original box. Inside ea
h of the smaller box a test based on

Bernstein polynomials (Se
. 3.1) is used to determine whether the box might


ontain part of the surfa
e. In su
h 
ase the re
ursion 
ontinues breaking

the box into eight more boxes. We found that three levels of re
ursion, giving

boxes whose edge lengths are an eighth of those of the original box, are enough
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to give a 
ourse representation of the surfa
e and four levels of re
ursion

produ
e quite a detailed model.

After this re
ursion ea
h of the smaller boxes is examined in greater detail.

Three types of points are found (Fig. 3):

1. Points on the edges on the box where f = 0.

2. Points on the fa
es of the box where f = 0 and at least one of partial

derivatives,

�f

�x

,

�f

�y

or

�f

�z

vanish. We shall 
all these 2-nodes.

3. Points in the interior of the box where f = 0 and at least two of the

partial derivatives vanish. We shall 
all these 3-nodes.

Re
ursive algorithms are used for ea
h of these steps whi
h are des
ribed in

se
tions 3.2, 3.3 and 3.4.

Fig. 3. The types of solutions found in a box

Finally the points found are 
onne
ted together to give a polygonization

of the surfa
e whi
h is returned to the 
lient (Se
. 3.5).

A few assumptions about the surfa
e are ne
essary to avoid degenerate


ases: that the surfa
e does not interse
t the 
orners of the box; that none

of the partial derivatives vanish at the solutions on the edges of the box;

and that the 2-nodes on the fa
es of the box are isolated. Provided that the

polynomial is not redu
ible, i.e. not of the form h(x; y; z)(g(x; y; z))

2

= 0,

then all these assumptions 
an be satis�ed by putting the surfa
e in general

position. This 
an always be a
hieved by slightly 
hanging the bounds of the

box. Typi
ally the domain needs to be 
onstru
ted with unequal bounds so

that the origin, whi
h is often a singular point does not lie at a 
orner of a

box.
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3.1 Bernstein polynomials

The 
omputations involved in the program are made mu
h simpler by the use

of Bernstein polynomials. These o�er a qui
k test to see if a polynomial might

have a zero inside a domain. All the results in this se
tion are well known and

the algorithms have been taken from a method for drawing algebrai
 
urves

in 2D, des
ribed by A. Geisow [6℄ and details of the implementation 
an be

found in [8℄.

A 1D Bernstein polynomial B(x) of degree n is written as

B(x) =

n

X

i=0

b

i

�

n

i

�

(1� x)

i

x

n�i

:

The b

i

's are the Bernstein 
oeÆ
ients. We are only interested in Bernstein

polynomials whi
h are de�ned over the range [0; 1℄. In three dimensions the

Bernstein representation of a polynomial of degrees l, m and n in x, y, and

z is

l

X

i=1

m

X

j=1

n

X

k=1

�

l

i

��

m

j

��

n

k

�

(1� x)

i

x

l�i

(1� y)

j

y

m�j

(1� z)

k

z

n�k

:

A test for zeros

If all the Bernstein 
oeÆ
ients of a 1D Bernstein polynomials have the same

sign, all stri
tly positive or all stri
tly negative, then the polynomial has

no zeros between 0 and 1. A similar result happens in the 3D 
ase. This is

easily proved by noting that (1 � x)

i

x

n�i

is non-negative for x 2 [0; 1℄ and

0 � i � n. Note the 
onverse does not always hold and it is possible to


onstru
t a Bernstein polynomial whi
h has 
oeÆ
ients of di�erent signs but

no zeros on [0; 1℄.

Other algorithms

Several other routines are ne
essary for the operation of the program:

� 
onstru
ting a Bernstein polynomial from a standard polynomial, this

involves res
aling the domain so that it �ts [0; 1℄,

� evaluating a Bernstein polynomial at a spe
i�
 point,

� 
al
ulating the derivative of a Bernstein polynomial,

� splitting the domain into two equal halves and 
onstru
ting Bernstein

polynomials for ea
h half.

The last of these algorithms is ne
essary for the re
ursion steps, where a box

is split into 8 smaller boxes.
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3.2 Finding solutions on edges

A simple 1-dimensional sub-division algorithm is used to �nd the solutions on

an edge of the box. A 1-dimensional Bernstein polynomials is 
onstru
ted by

restri
ting of the fun
tion to the edge. If all the 
oeÆ
ients of the Bernstein

polynomial are the same sign then there is no solution on the edge. Otherwise

Bernstein polynomials are 
onstru
ted for ea
h of the partial derivatives. If

the Bernstein 
oeÆ
ients for any of the partial derivatives are not all of the

same sign then there may be more than one solution on the edge. In su
h


ases the edge is split into two and the pro
ess repeated for ea
h sub-edge.

Otherwise the signs at the end points are examined to determine whether

there is a solution on the edge. If so, the solution is found by repeatedly

sub-dividing the edge and looking for a 
hange of sign. The sub-division is


arried out until sub-pixel level is rea
hed.

3.3 Finding nodes on fa
es

Another re
ursive pro
edure is needed to �nd solutions on the fa
es of the

box where one or more partial derivatives vanish. This routine is also used

to �nd lines 
onne
ting solutions on the fa
e and its edges.

For a given fa
e the 2-dimensional Bernstein polynomial b is 
onstru
ted.

Bernstein polynomials are also 
onstru
ted for the three partial derivative

fun
tions. There are a number of 
ase shown in Fig. 4.

� If the 
oeÆ
ients of b are all of the same sign then the surfa
e does not

interse
t the fa
e and the fa
e is ignored, Fig. 4(a).

� If the 
oeÆ
ients of b are not all of the same sign and the 
oeÆ
ients of

ea
h of the partial derivative are all of the same sign, then there are ex-

a
tly two solutions on the edges of the fa
e. These solutions are 
onne
ted

by a line on the fa
e and the re
ursion end, Fig. 4(b).

� If the 
oeÆ
ients of any one of the derivatives fail to be all of the same

sign then the fa
e is divide into four smaller fa
es. Ea
h of these fa
e,

and its edges, is then re
ursively tested, Fig. 4(b).

This pro
ess is 
arried out re
ursively until a pre-de�ned depth, typi
ally

pixel level, is rea
hed.

When the bottom level of re
ursion is rea
hed the fa
e may 
ontain a

node and further pro
essing is needed to dedu
e the geometry. If only one

derivative vanishes then there may be a turning point, where f =

�f

�x

= 0

say. Typi
ally there will be one of the situations shown in Fig. 5. These 
an

be distinguished by 
ounting the number of solutions on the edges of the fa
e

and examining their derivatives.

� If there are no solutions then the fa
e is ignored, Fig. 5(a).

� If there are two solutions and the signs of the derivatives mat
h then they

are linked by a line, Fig. 5(d).
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(b)  face where

(a) face with no solutions

a derivative vanishes

which is sub−divided

(c) face where

      no derivatives

      vanish

Fig. 4. Sub-dividing a fa
e

� If there are four solutions then they are the tested for signs of their

derivatives pair-wise. Pairs with mat
hing derivatives are linked by lines.

Fig. 5(
).

� If there are two solutions whi
h have di�erent signs for the partial deriva-

tive then a 2-node is 
onstru
ted in the 
entre of the fa
e and this is linked

to ea
h of the solutions, Fig. 5(b).

(d)

2−node

f=0

df/dx = 0

(a) (b) (c)

Fig. 5. Fa
es where one derivative vanishes

Consider the 
ase shown in �gure 6. Here two partial derivatives vanish

in both fa
es, yet only one 
ontains a 2-node. To distinguish between the two


ases observer that the two 
urves

�f

�x

= 0 and

�f

�y

= 0 only 
ross in the fa
e

whi
h 
ontains the 2-node. In this fa
e a 2-node is 
reated in the 
entre of

the fa
e and linked to the ea
h of the solutions on the edges. In the other

fa
e the solutions on the edge are linked pair-wise. This situation typi
ally

o

urs when a self-interse
tion of the surfa
e 
rosses a fa
e, in whi
h 
ase all

three derivatives will vanish. A similar situation o

urs when a degenerate
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line passes through the fa
e: the zero sets of all three derivatives will interse
t

in a single point. This example illustrates the limits of using re
ursion, �ner

levels of re
ursion would not help resolve this 
ase as the geometry looks

similar even under greater magni�
ation.

df/dx = 0

f = 0

df/dy = 0

Fig. 6. Two fa
es where two derivatives vanish, only the left-hand one 
ontains a

node

3.4 Finding singularities inside a box

A re
ursive pro
edure is used to �nd the 3-nodes inside a box where two

or more derivatives vanish. These 
an either be singularities where all three

derivatives vanish or points like the north-pole of the sphere, x

2

+y

2

+z

2

= 1,

where two derivatives vanish. In
luding the latter type of point helps produ
e

better polygonization as it does not trun
ated the surfa
e.

This re
ursion splits ea
h box into eight sub-boxes and the Bernstein test

is used to tell whether the fun
tion f or its derivatives vanish.

� If f does not vanish then the box is ignored.

� If none of the derivatives vanish then the box is ignored.

� If only one derivative vanishes then the number of 2-nodes on the fa
es

of the box is found and the signs of their derivatives is examined.

{ If there are no 2-nodes the box is ignored.

{ If there are two 2-nodes and the signs of their derivatives mat
h then

the 2-nodes are linked by a line and the re
ursion ends.

{ If there are four 2-nodes then the signs are 
ompared pair-wise to see

how they link together. Mat
hing pairs are linked by lines.

� Otherwise, when two or more derivatives vanish, the geometry 
an not

be easily be established and the re
ursion 
ontinues.

When the bottom level of re
ursion is rea
hed it is assumed that the box


ontains a singularity (or point like the north pole of a sphere). A 3-node is


onstru
ted in the 
entre of the box and linked to ea
h of the 2-nodes on the

fa
es of the box. It may also be an isolated point where all three derivatives

vanish but there are no 2-nodes on the fa
es.

The test for 3-nodes is too strong and it is possible that some points

are in
orre
tly marked as singularities. This is illustrated by the swallowtail

surfa
e where several in
orre
t isolated points are found near the 
uspidal

edge, Fig. 7.
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Fig. 7. In
orre
t isolated points found near the 
uspidal edge of a swallowtail sur-

fa
e

3.5 Constru
ting a polygonization

The �nal stage in the algorithm is to 
onstru
t a set of polygons whi
h

approximate the surfa
e. This is 
arried for ea
h box found in the �rst stage

of the re
ursion. At this stage there is a set of points linked by lines. Some

of the points lie on the edges and fa
es of the box and others (3-nodes) may

lie in the interior. However there is no information about whi
h of the lines

form the boundaries of whi
h polygons. It would be possible to gather su
h

information while �nding the 3-nodes inside the boxes. However, this would

require many more sub-boxes to be examined whi
h would slow down the

algorithm. Instead a more ad ho
 algorithm is adopted, for most surfa
es

this will give a reasonable polygonization of the surfa
e and there are only

a few 
ases where it does not produ
e a 
orre
t polygonization. These 
ases

typi
ally o

ur when more singularities than really exist have been identi�ed

in Se
. 3.4.

The basi
 idea behind the algorithm is to 
onstru
t polygons whose edges

just 
onsist of the lines on the fa
es of the box and then modify the polygon

so that they in
lude the internal lines. As a pre
ursor to the main algorithm

two sets of lines are found:

� Cy
les: 
losed loops of lines whi
h lie on the fa
es of the box.

� Chains: 
onne
ted sets of lines joining 3-nodes in the interior of the box

and 2-nodes on its fa
es. The end-points of ea
h 
hains will be 2-nodes

on the fa
es of the box.

For many simple 
ases where there are no internal points there will be no


hains and the 
y
les will form the boundaries of the polygons. For other


ases some re�nement is ne
essary:

� If the 
y
le forms a �gure of eight shape, the 
y
le is split into two 
y
les

whi
h 
ontain no self interse
tions. This situation o

urs when the surfa
e

has a self-interse
tion.
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� If there are two disjoint 
y
les whi
h are linked by a two or more non-

interse
ting 
hains then the surfa
e will form a 
ylinder. In su
h 
ases

two new 
y
les are formed. Ea
h form half the 
ylinder split along the


hains Fig. 8.

� If two points on a 
y
le are linked together by a 
hain then two new 
y
les

are formed whi
h in
lude the lines in the 
hain and some of the edges of

the original 
y
le.

Chains

h g
fe

d c
b

a
Cycle

Cycle

Fig. 8. Constru
ting a 
ylinder. The 
y
les a-b-
-d and e-f-g-h and the 
hains a-e,


-g are linked to form two 
y
les a-b-
-g-f-e and 
-d-a-e-h-g

b−c−d−e, d−a−e

b

cycles: a−b−e, b−c−d−a−e

d

c

b

a

cycle: a−b−c−d

Cycle

Chains

a

c

d

ee

d

c

b

a

a
b

c

d

ee

cycles: a−b−ecycles: a−d−e,

b−c−e, c−d−e, d−a−e

Fig. 9. Steps in the pro
ess of 
reating a polygonization of the top half of a sphere.

Stating with a 
y
le and four 
hains the lines in the 
hains are progressively added

to 
reate four 
y
les used for the polygonization
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These re�nement happen until no more re�nement are possible. The 
y
les

then form the boundaries of the polygons. An example of this pro
ess is shown

in Fig. 9 where three steps are needed to produ
e the �nal set of 
y
les. In

pra
ti
e the geometry is often more 
ompli
ated that this example, Fig. 10

shows the polygonization for four boxes near a D

4

singularity. Note that

several 3-nodes have been found near the singularity and the topology of the

obje
t is not quite 
orre
t.

Fig. 10. A 
lose-up of the D

4

singularity showing the polygons found. Note how too

many 3-nodes have been found leading to a topologi
ally in
orre
t polygonization

4 Examples of Algebrai
 Surfa
es

One area of study involving algebrai
 surfa
es is singularity theory [3℄. An

important theorem of V. I. Arnold, [1, pp. 158{166℄ 
lassi�es the types of

simple singularities whi
h o

ur for fun
tions R

n

! R. These 
onsist of two

in�nite sequen
es: A

k

; k � 1, D

k

; k � 4 and three other singularities E

6

, E

7

and E

8

. The normal forms of these for fun
tions R

3

! R are

� A

k

: �x

k+1

� y

2

� z

2

, where k � 1,

� D

k

: �x

k�1

+ xy

2

� z

2

, where k � 4,

� E

6

: �x

4

+ y

3

� z

2

,

� E

7

: x

3

y + y

3

� z

2

,

� E

8

: x

5

+ y

3

� z

2

.

Further singularities exist whi
h are not te
hni
ally simple, however these

have higher 
o-dimensions and are less frequently en
ountered. The zero sets

of some of these normal forms are shown in Figures 1 and 11.

The singularities mentioned above are the only ones whi
h o

ur in generi


families of fun
tions R

n

! R. In parti
ular the singularities are always iso-

lated. However, many of the well known fun
tions are de
idedly non-generi


and 
an 
ontain self interse
tions, triple points, degenerate lines, 
ross-
aps
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(a) A

3

(b) D

6

(
) E

7

Fig. 11. Zero sets of the normal forms of some singularities

and 
uspidal edges. Steiner's Roman surfa
e is an example whi
h 
ontains

six 
ross 
aps.

Dis
riminant surfa
es are an important 
lass of surfa
es whi
h are not

generi
 when viewed as fun
tions. Consider the family of quarti
 polynomials

f(t) = t

4

+ zt

2

+ yt+ x, whi
h will have a repeated root whenever f(t) = 0

and

df

dt

= 4t

3

+2zt+y = 0. Solving these equations for t gives the swallowtail

surfa
e �4z

3

y

2

� 27y

4

+ 16xz

4

� 128x

2

z

2

+ 144xy

2

z + 256x

3

= 0 (Fig. 12).

Points of this surfa
e will give values of x, y, z for whi
h f(t) will have

a repeated root. Furthermore, if the point lies on the 
uspidal edge then

d

2

f

dt

2

= 0 and f(t) has a triple root. The self-interse
tion of the surfa
e gives

those polynomials where f(t) has two repeated roots. There is also a tail

whi
h gives polynomials whi
h have two 
omplex 
onjugate repeated roots.

Finally the swallowtail point x = y = z = 0 
orresponds to the polynomial

t

4

= 0.

Fig. 12. The dis
riminant surfa
e for t

4

+ zt

2

+ yt+ x showing the types of roots

whi
h 
an o

ur.
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An interesting area of study is to �nd low degree algebrai
 surfa
es whi
h


ontain many nodes [4℄. Some examples of these in
lude:

� Cayley's 
ubi
, a 
ubi
 surfa
e with the maximum of four nodes, 4(x

2

+

y

2

+ z

2

) + 16xyz = 1, Fig. 13(a).

� Kummer surfa
es, a family of quarti
 surfa
es some of whi
h have 16

nodes (3 � v

2

)(x

2

+ y

2

+ z

2

� v

2

)

2

� (3v

2

� 1)(1 � z � x

p

2)(1 � z +

x

p

2)(1 + z + y

p

2)(1 + z � y

p

2) = 0, Fig. 13(b).

� Barth's sexti
 with 65 nodes 4(�

2

x

2

� y

2

)(�

2

y

2

� z

2

)(�

2

z

2

� x

2

) � (1 +

2�)(x

2

+ y

2

+ z

2

� 1)

2

= 0 where � = (1 +

p

5)=2, Fig. 13(
).

These prove to be good test 
ases for the algorithm, whi
h produ
es good

but not perfe
t representations of the surfa
e.

(a) Cayley's 
ubi
 (b) Kummer Sur-

fa
e

(
) Barth's sexti


Fig. 13. Algebrai
 surfa
es with many nodes

5 Con
lusion

This program 
an produ
e good models of many algebrai
 surfa
es in
luding

those that 
ontain singularities and it 
an even �nd the handle on a 
ross-


ap. It o�ers 
onsiderable advantages over many other algorithms whi
h often

miss the singular points 
ompletely. The improvements in the polygonization

step has 
onsiderable improved it performan
e over previous versions.

The adaptation of the Java interfa
e has 
onsiderably improved the us-

ability of the software and it 
an now display the surfa
es on most platforms

without any spe
ial hardware or software requirements. It 
an also be used

as a stand-alone program on windows ma
hines without needing an open In-

ternet 
onne
tion. This greatly opens up the potential of the program as it


ould easily be used as an edu
ational tool in s
hools and 
olleges.

The adoption of the 
lient-server system was primarily motivated by ease

of porting. The original 
ode was written in C and it would have been a
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onsiderable task to 
onvert this to Java. Adapting the 
ode to run as a server

and produ
e JVX format models was relatively straightforward. This system

does have the advantage of making installation trivial. The system does also

establish the program as a mathemati
al server whi
h 
ould potentially be

used by other appli
ations and in
orporated into larger programs.

Whilst the models are visually good they are not always topologi
ally


orre
t. There are inherent problems with the algorithm as the Bernstein

test for zeros of polynomials is too week and 
an in
orre
tly identify regions

as 
ontaining zeros. This is parti
ularly evident in the dete
tion of singu-

lar points around the more 
ompli
ated singularities su
h as the swallowtail

surfa
e. Some improvement 
ould be made by paying more attention to the

behaviour of derivatives around the singular points. One possible path for

improvement is to use a parti
le based approa
h [14,15℄ where a set of par-

ti
les surrounding the surfa
e is allowed to 
onverge to the surfa
e. Another

method might be to try to determine the type of singularity and use that

information to inform the polygonization.

The approa
h we have taken here 
an be 
ontrasted with ray-tra
ing

approa
hes [5,7℄. They produ
e single high quality images from a single di-

re
tion. The image quality of su
h algorithms is better than those produ
e

by our algorithm. However produ
ing a 3D model whi
h 
an be rotated and

s
aled 
an give a better feel for the surfa
e and 
an allow parti
ular points

to be inspe
ted.

Oliver Labs has integrated our program with the surf ray-tra
er [5℄: First

the 3D model is 
al
ulated and rotated to produ
e a good view of the surfa
e.

The viewing parameters are then passed to surf to generate a high quality

image from that dire
tion.

There are several extensions to the pa
kage and the algorithm has been

adapted to produ
e algebrai
 
urves in 2D and 3D. The applet 
an be found

online at http://www.
omp.leeds.a
.uk/pfaf/lsmp/SingSurf.html and

http://www.javaview.de/servi
es/algebrai
/.
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