A Client-Server System for the Visualisation
of Algebraic Surfaces on the Web

Richard Morris

Department of Statistics, University of Leeds, Leeds LS2 9JT, UK

Abstract. Algebraic surfaces, defined as the zero set of a polynomial function
in three variables, present a particular problem for visualising, especially if the
surface contains singularities. Most algorithms for constructing a polygonization of
the surface will miss the singular points. We present an algorithm for polygonizing
such surfaces which attempts to get accurate representations of the singular points.
A client-server approach, with a Java applet and a C program as backend, is used
to enable the visualisation of the polygonal mesh in a web browser. This system
allows algebraic surfaces to be viewed in any web browser and on any platform.

1 Introduction

Algebraic surfaces, defined as the zero set of a polynomial function in three
variables, have a long history in mathematics. There are many famous sur-
faces such as Steiner’s Roman Surface, Fig. 1(a), an immersion of the real
projective plane, which is represented as the algebraic surface z2y? + y%22 +
22z? = 2xyz.

Algebraic surfaces often contain singular points, where all three partial
derivatives vanish. For example the double cone, 22 — y? — 22 = 0, has an
A; singularity or node at the origin, Fig. 1(b). There are other more com-
plicated isolates singularities such as: 2%y — y3 — 22 = 0 which has a Dy
singularity, Fig. 1(c). Other surfaces are more complicated and can contain
self-intersections, xy = 0, and degenerate lines, 2 + y> = 0. The cross-
cap or Whitney umbrella, 22z + y?> = 0 contains a self intersection along
x =2z =0,y > 0 and a degenerate line along x = z = 0, y < 0. The
line forms the ‘handle’ of the umbrella, Fig. 1(d). The swallowtail surface,
—42%y% — 27y* + 1622* — 1282222 + 1442y%2 + 2562° = 0, is even more com-
plicated and contains a cuspidal edge, Fig. 1(e). These and other examples
of algebraic surfaces will be further examined in section 4.

These singularities cause particular problems for constructing computer
models of the surfaces. Many algorithms will simply ignore the singular
points [2,10]. However if information about singularities is included from the
ground up it is possible to construct an algorithm, described here, which can
produce good 3D models of most algebraic surfaces.

The surfaces are displayed in a web-page using a Java applet which uses
the JavaView library [12,13] to allow rotation of the surface. This applet



2 Richard Morris

(a) Steiner’s Roman (b) A, singularity (¢) D4 singularity
Surface

(d) A cross-cap (e) A swallowtail

Fig. 1. Some algebraic surfaces

connects to a server on the Internet which actually calculates polygonization
of the surface.

The program described here has been adapted from an earlier program [8,9]
which ran as a standalone application on SGI machines and used the Ge-
omview [11] program for visualisation. The principal improvements have been
the Java interface and an improved method of finding the polygonization 3.5.

2 The client applet

The client side of the system is fairly straightforward. It consists of a Java
applet written using the JavaView library. It has two panels, one of which
displays the surface and allows the surface to be rotated and scaled using the
mouse. The other panel contains an area to input the equation of the surface
as well as controls for selecting the region space in which the surface will be
calculated. Several predefined equations are provided. These include many
well known algebraic surface. The syntax of equations is standard TeX style
notation and allows sub-equation to be defined as well as allowing a symbolic
differentiation operator and vector operations. The user interface is shown in
figure 2.

A button press causes the surface is to be calculated. A CGI-POST re-
quest, which encodes the defining equation and options, is sent to the server



Visualisation of Algebraic Surfaces 3

Algebric Surfaces

Definition | Dorain Fesalution

Ly - yd - 22 = 00 k|

|
Pre-defined surfaces:

Ad =) =

Calcubte I

Fig. 2. The user interface for the program

which then calculates a polygonization of the surface. This is then returned
to the client in JavaView’s JVX format. If the defining equation is very de-
generate, say a reducible equation like 22 = 0, then the server can take a long
time to calculate the surface. To prevent this happening a maximum calcu-
lation time is specified by the user. If this time limit is exceeded then the
calculation of the surface will end prematurely. Ideally an interrupt button
could be provided to halt the calculation of the surface, but this cannot be
achieved using the CGI protocol.

Due to Java security restrictions the Java applet can only connect to
servers which lie on the same Internet host. This makes it difficult for users to
modify the applet or include it in their own software. This could be overcome
by signing the Java code.

3 The server

The server takes the defining equation, f(x,y, z) = 0, of an algebraic surfaces
and produces a ploygonization of the surface inside a rectangular box specified
by the user.

The basic algorithm starts with a rectangular box. Recursive sub-division
is used to split that box into 8 smaller boxes, the edge-lengths of the which are
half those of the original box. Inside each of the smaller box a test based on
Bernstein polynomials (Sec. 3.1) is used to determine whether the box might
contain part of the surface. In such case the recursion continues breaking
the box into eight more boxes. We found that three levels of recursion, giving
boxes whose edge lengths are an eighth of those of the original box, are enough



4 Richard Morris

to give a course representation of the surface and four levels of recursion
produce quite a detailed model.

After this recursion each of the smaller boxes is examined in greater detail.
Three types of points are found (Fig. 3):

1. Points on the edges on the box where f = 0.

2. Points on the faces of the box where f = 0 and at least one of partial
derivatives, %ﬁ, %5 or %f vanish. We shall call these 2-nodes.

3. Points in the interior of the box where f = 0 and at least two of the

partial derivatives vanish. We shall call these 3-nodes.

Recursive algorithms are used for each of these steps which are described in
sections 3.2, 3.3 and 3.4.

Points on faces of | bo
where 1 derivative vanishes

Zaros where two or more

Zeros on edges of box 05 W ¢
derivatives vanish

Fig. 3. The types of solutions found in a box

Finally the points found are connected together to give a polygonization
of the surface which is returned to the client (Sec. 3.5).

A few assumptions about the surface are necessary to avoid degenerate
cases: that the surface does not intersect the corners of the box; that none
of the partial derivatives vanish at the solutions on the edges of the box;
and that the 2-nodes on the faces of the box are isolated. Provided that the
polynomial is not reducible, i.e. not of the form h(z,y,z)(g9(x,y,2))? = 0,
then all these assumptions can be satisfied by putting the surface in general
position. This can always be achieved by slightly changing the bounds of the
box. Typically the domain needs to be constructed with unequal bounds so
that the origin, which is often a singular point does not lie at a corner of a
box.



Visualisation of Algebraic Surfaces 5

3.1 Bernstein polynomials

The computations involved in the program are made much simpler by the use
of Bernstein polynomials. These offer a quick test to see if a polynomial might
have a zero inside a domain. All the results in this section are well known and
the algorithms have been taken from a method for drawing algebraic curves
in 2D, described by A. Geisow [6] and details of the implementation can be
found in [8].

A 1D Bernstein polynomial B(x) of degree n is written as

B(z) = iﬁ;bi <’Z> (1— )iz

The b;’s are the Bernstein coefficients. We are only interested in Bernstein
polynomials which are defined over the range [0, 1]. In three dimensions the
Bernstein representation of a polynomial of degrees [, m and n in z, y, and
z is

S35 () (1) (3) a- e i - e

i=1 j=1 k=1

A test for zeros

If all the Bernstein coefficients of a 1D Bernstein polynomials have the same
sign, all strictly positive or all strictly negative, then the polynomial has
no zeros between 0 and 1. A similar result happens in the 3D case. This is
easily proved by noting that (1 — z)?z"~% is non-negative for = € [0,1] and
0 < i < n. Note the converse does not always hold and it is possible to
construct a Bernstein polynomial which has coefficients of different signs but
no zeros on [0, 1].

Other algorithms
Several other routines are necessary for the operation of the program:

e constructing a Bernstein polynomial from a standard polynomial, this
involves rescaling the domain so that it fits [0, 1],

e evaluating a Bernstein polynomial at a specific point,

e calculating the derivative of a Bernstein polynomial,

e splitting the domain into two equal halves and constructing Bernstein
polynomials for each half.

The last of these algorithms is necessary for the recursion steps, where a box
is split into 8 smaller boxes.



6 Richard Morris

3.2 Finding solutions on edges

A simple 1-dimensional sub-division algorithm is used to find the solutions on
an edge of the box. A 1-dimensional Bernstein polynomials is constructed by
restricting of the function to the edge. If all the coefficients of the Bernstein
polynomial are the same sign then there is no solution on the edge. Otherwise
Bernstein polynomials are constructed for each of the partial derivatives. If
the Bernstein coefficients for any of the partial derivatives are not all of the
same sign then there may be more than one solution on the edge. In such
cases the edge is split into two and the process repeated for each sub-edge.
Otherwise the signs at the end points are examined to determine whether
there is a solution on the edge. If so, the solution is found by repeatedly
sub-dividing the edge and looking for a change of sign. The sub-division is
carried out until sub-pixel level is reached.

3.3 Finding nodes on faces

Another recursive procedure is needed to find solutions on the faces of the
box where one or more partial derivatives vanish. This routine is also used
to find lines connecting solutions on the face and its edges.

For a given face the 2-dimensional Bernstein polynomial b is constructed.
Bernstein polynomials are also constructed for the three partial derivative
functions. There are a number of case shown in Fig. 4.

o If the coefficients of b are all of the same sign then the surface does not
intersect the face and the face is ignored, Fig. 4(a).

o If the coefficients of b are not all of the same sign and the coefficients of
each of the partial derivative are all of the same sign, then there are ex-
actly two solutions on the edges of the face. These solutions are connected
by a line on the face and the recursion end, Fig. 4(b).

o If the coefficients of any one of the derivatives fail to be all of the same
sign then the face is divide into four smaller faces. Each of these face,
and its edges, is then recursively tested, Fig. 4(b).

This process is carried out recursively until a pre-defined depth, typically
pixel level, is reached.

When the bottom level of recursion is reached the face may contain a
node and further processing is needed to deduce the geometry. If only one
derivative vanishes then there may be a turning point, where f = % =0
say. Typically there will be one of the situations shown in Fig. 5. These can
be distinguished by counting the number of solutions on the edges of the face
and examining their derivatives.

e If there are no solutions then the face is ignored, Fig. 5(a).
e If there are two solutions and the signs of the derivatives match then they
are linked by a line, Fig. 5(d).



Visualisation of Algebraic Surfaces 7

(b) face where (c) face where
no derivatives a derivative vanishes
vanish which is sub—divided

(a) face with no solutions

Fig. 4. Sub-dividing a face

o If there are four solutions then they are the tested for signs of their
derivatives pair-wise. Pairs with matching derivatives are linked by lines.
Fig. 5(c).

o If there are two solutions which have different signs for the partial deriva-
tive then a 2-node is constructed in the centre of the face and this is linked
to each of the solutions, Fig. 5(b).

———————————————————— St difldx =0

(a) (b) (c) (d)

Fig. 5. Faces where one derivative vanishes

Consider the case shown in figure 6. Here two partial derivatives vanish
in both faces, yet only one contains a 2-node. To distinguish between the two
cases observer that the two curves % =0 and % = 0 only cross in the face
which contains the 2-node. In this face a 2-node is created in the centre of
the face and linked to the each of the solutions on the edges. In the other
face the solutions on the edge are linked pair-wise. This situation typically
occurs when a self-intersection of the surface crosses a face, in which case all

three derivatives will vanish. A similar situation occurs when a degenerate



8 Richard Morris

line passes through the face: the zero sets of all three derivatives will intersect
in a single point. This example illustrates the limits of using recursion, finer
levels of recursion would not help resolve this case as the geometry looks
similar even under greater magnification.

— | dffdx =0
~— | dfidy=0
f=0

Fig. 6. Two faces where two derivatives vanish, only the left-hand one contains a
node

3.4 Finding singularities inside a box

A recursive procedure is used to find the 3-nodes inside a box where two
or more derivatives vanish. These can either be singularities where all three
derivatives vanish or points like the north-pole of the sphere, 22 4+y?+22 =1,
where two derivatives vanish. Including the latter type of point helps produce
better polygonization as it does not truncated the surface.

This recursion splits each box into eight sub-boxes and the Bernstein test
is used to tell whether the function f or its derivatives vanish.

e If f does not vanish then the box is ignored.
e If none of the derivatives vanish then the box is ignored.
e If only one derivative vanishes then the number of 2-nodes on the faces
of the box is found and the signs of their derivatives is examined.
— If there are no 2-nodes the box is ignored.
— If there are two 2-nodes and the signs of their derivatives match then
the 2-nodes are linked by a line and the recursion ends.
— If there are four 2-nodes then the signs are compared pair-wise to see

how they link together. Matching pairs are linked by lines.
e Otherwise, when two or more derivatives vanish, the geometry can not

be easily be established and the recursion continues.

When the bottom level of recursion is reached it is assumed that the box
contains a singularity (or point like the north pole of a sphere). A 3-node is
constructed in the centre of the box and linked to each of the 2-nodes on the
faces of the box. It may also be an isolated point where all three derivatives
vanish but there are no 2-nodes on the faces.

The test for 3-nodes is too strong and it is possible that some points
are incorrectly marked as singularities. This is illustrated by the swallowtail
surface where several incorrect isolated points are found near the cuspidal
edge, Fig. 7.



Visualisation of Algebraic Surfaces 9

Fig. 7. Incorrect isolated points found near the cuspidal edge of a swallowtail sur-
face

3.5 Constructing a polygonization

The final stage in the algorithm is to construct a set of polygons which
approximate the surface. This is carried for each box found in the first stage
of the recursion. At this stage there is a set of points linked by lines. Some
of the points lie on the edges and faces of the box and others (3-nodes) may
lie in the interior. However there is no information about which of the lines
form the boundaries of which polygons. It would be possible to gather such
information while finding the 3-nodes inside the boxes. However, this would
require many more sub-boxes to be examined which would slow down the
algorithm. Instead a more ad hoc algorithm is adopted, for most surfaces
this will give a reasonable polygonization of the surface and there are only
a few cases where it does not produce a correct polygonization. These cases
typically occur when more singularities than really exist have been identified
in Sec. 3.4.

The basic idea behind the algorithm is to construct polygons whose edges
just consist of the lines on the faces of the box and then modify the polygon
so that they include the internal lines. As a precursor to the main algorithm
two sets of lines are found:

e Cycles: closed loops of lines which lie on the faces of the box.

e Chains: connected sets of lines joining 3-nodes in the interior of the box
and 2-nodes on its faces. The end-points of each chains will be 2-nodes
on the faces of the box.

For many simple cases where there are no internal points there will be no
chains and the cycles will form the boundaries of the polygons. For other
cases some refinement is necessary:

e If the cycle forms a figure of eight shape, the cycle is split into two cycles
which contain no self intersections. This situation occurs when the surface
has a self-intersection.



10 Richard Morris

e If there are two disjoint cycles which are linked by a two or more non-
intersecting chains then the surface will form a cylinder. In such cases
two new cycles are formed. Each form half the cylinder split along the
chains Fig. 8.

e If two points on a cycle are linked together by a chain then two new cycles
are formed which include the lines in the chain and some of the edges of
the original cycle.

Fig. 8. Constructing a cylinder. The cycles a-b-c-d and e-f-g-h and the chains a-e,
c-g are linked to form two cycles a-b-c-g-f-e and c-d-a-e-h-g

cycles: a—d—e, cycles: a—b—e
b—c—d-e. d—a—e b—c—e. c—d—e. d—a—e

Fig. 9. Steps in the process of creating a polygonization of the top half of a sphere.
Stating with a cycle and four chains the lines in the chains are progressively added
to create four cycles used for the polygonization



Visualisation of Algebraic Surfaces 11

These refinement happen until no more refinement are possible. The cycles
then form the boundaries of the polygons. An example of this process is shown
in Fig. 9 where three steps are needed to produce the final set of cycles. In
practice the geometry is often more complicated that this example, Fig. 10
shows the polygonization for four boxes near a D, singularity. Note that
several 3-nodes have been found near the singularity and the topology of the
object is not quite correct.

Fig. 10. A close-up of the Dy singularity showing the polygons found. Note how too
many 3-nodes have been found leading to a topologically incorrect polygonization

4 Examples of Algebraic Surfaces

One area of study involving algebraic surfaces is singularity theory [3]. An
important theorem of V. I. Arnold, [1, pp. 158-166] classifies the types of
simple singularities which occur for functions R" — R. These counsist of two
infinite sequences: Ay, k > 1, D,k > 4 and three other singularities Fg, Er
and Eg. The normal forms of these for functions R®> — R are

Ap: bt £4% £ 22 where k > 1,
Dy: b1 + 2y? + 22, where k > 4,
Eg: +2* + 9% + 22,

E;: 23y +y2 £+ 22,

Eg: 25 4+ y3 £ 22,

Further singularities exist which are not technically simple, however these
have higher co-dimensions and are less frequently encountered. The zero sets
of some of these normal forms are shown in Figures 1 and 11.

The singularities mentioned above are the only ones which occur in generic
families of functions R™ — R. In particular the singularities are always iso-
lated. However, many of the well known functions are decidedly non-generic
and can contain self intersections, triple points, degenerate lines, cross-caps



12 Richard Morris

(a) A3 (b) D6 (C) E7

Fig. 11. Zero sets of the normal forms of some singularities

and cuspidal edges. Steiner’s Roman surface is an example which contains
SiX cross caps.

Discriminant surfaces are an important class of surfaces which are not
generic when viewed as functions. Consider the family of quartic polynomials
f(t) = t* + 2t®> + yt + x, which will have a repeated root whenever f(t) =0
and % = 4#3 4+ 22t +y = 0. Solving these equations for ¢ gives the swallowtail
surface —42%y? — 27y + 1622* — 1282222 + 1442y°z + 2562° = 0 (Fig. 12).
Points of this surface will give values of z, y, z for which f(¢) will have
a repeated root. Furthermore, if the point lies on the cuspidal edge then
% = 0 and f(¢) has a triple root. The self-intersection of the surface gives
those polynomials where f(t) has two repeated roots. There is also a tail
which gives polynomials which have two complex conjugate repeated roots.
Finally the swallowtail point x = y = z = 0 corresponds to the polynomial
t*=0.

Two roots

\ t"d =0 Repeated root

Triple repeated root

Four roots

Two repeated complex
conjugate roots

Two repeated roots No roots

Fig. 12. The discriminant surface for t! 4+ zt? + yt + = showing the types of roots
which can occur.



Visualisation of Algebraic Surfaces 13

An interesting area of study is to find low degree algebraic surfaces which
contain many nodes [4]. Some examples of these include:

e Cayley’s cubic, a cubic surface with the maximum of four nodes, 4(z? +
y? + 2?%) + 16zyz = 1, Fig. 13(a).

e Kummer surfaces, a family of quartic surfaces some of which have 16
nodes (3 — v?)(z2 +y? + 22 —0?)? — (3?2 = 1)(1 — 2z —2v2)(1 — 2 +
2v2)(1+ 2 + yv2)(1 + z — y/2) = 0, Fig. 13(b).

e Barth’s sextic with 65 nodes 4(722? — y?)(7%y? — 22)(r22% — 2%) — (1 +
27) (2% + y? + 22 — 1)®> = 0 where 7 = (1 ++/5)/2, Fig. 13(c).

These prove to be good test cases for the algorithm, which produces good
but not perfect representations of the surface.

(a) Cayley’s cubic (b) Kummer Sur- (c) Barth’s sextic
face

Fig. 13. Algebraic surfaces with many nodes

5 Conclusion

This program can produce good models of many algebraic surfaces including
those that contain singularities and it can even find the handle on a cross-
cap. It offers considerable advantages over many other algorithms which often
miss the singular points completely. The improvements in the polygonization
step has considerable improved it performance over previous versions.

The adaptation of the Java interface has considerably improved the us-
ability of the software and it can now display the surfaces on most platforms
without any special hardware or software requirements. It can also be used
as a stand-alone program on windows machines without needing an open In-
ternet connection. This greatly opens up the potential of the program as it
could easily be used as an educational tool in schools and colleges.

The adoption of the client-server system was primarily motivated by ease
of porting. The original code was written in C and it would have been a



14 Richard Morris

considerable task to convert this to Java. Adapting the code to run as a server
and produce JVX format models was relatively straightforward. This system
does have the advantage of making installation trivial. The system does also
establish the program as a mathematical server which could potentially be
used by other applications and incorporated into larger programs.

Whilst the models are visually good they are not always topologically
correct. There are inherent problems with the algorithm as the Bernstein
test for zeros of polynomials is too week and can incorrectly identify regions
as containing zeros. This is particularly evident in the detection of singu-
lar points around the more complicated singularities such as the swallowtail
surface. Some improvement could be made by paying more attention to the
behaviour of derivatives around the singular points. One possible path for
improvement is to use a particle based approach [14,15] where a set of par-
ticles surrounding the surface is allowed to converge to the surface. Another
method might be to try to determine the type of singularity and use that
information to inform the polygonization.

The approach we have taken here can be contrasted with ray-tracing
approaches [5,7]. They produce single high quality images from a single di-
rection. The image quality of such algorithms is better than those produce
by our algorithm. However producing a 3D model which can be rotated and
scaled can give a better feel for the surface and can allow particular points
to be inspected.

Oliver Labs has integrated our program with the surf ray-tracer [5]: First
the 3D model is calculated and rotated to produce a good view of the surface.
The viewing parameters are then passed to surf to generate a high quality
image from that direction.

There are several extensions to the package and the algorithm has been
adapted to produce algebraic curves in 2D and 3D. The applet can be found
online at http://www.comp.leeds.ac.uk/pfaf/lsmp/SingSurf.html and
http://www.javaview.de/services/algebraic/.

References

1. Arnold, V. I, 1981: Singularity Theory. London Mathematical Society Lecture
Notes 53

2. Bloomenthal, J., Implicit Surfaces Bibliography, http://implicit.eecs.wsu.
edu/biblio.html

3. Bruce, J. W., Giblin, P. J., Curves and Singularities (second edition), Cam-
bridge, 1992

4. Endrass, S., Surface with Many Nodes, http://enriques.mathematik.
uni-mainz.de/kon/docs/Eflaechen.shtml

5. Endrass, S., Huelf, H., Oertel, R., Schneider, K., Schmitt, R., Beigel, J., Surf
home page, http://surf.sourceforge.net

6. Geisow, A., (1982), Surface Interrogation, Ph.D. Thesis, University of East
Anglia



10.

11.

12.

13.

14.

15.

Visualisation of Algebraic Surfaces 15

Kalra, D., Barr, A. H., Guaranteed Ray Intersection with Implicit Surfaces.
Computer Graphics, 23(3) 1989, 297-304.

Morris, R. J., A New Method for Drawing Algebraic Surfaces. In Fisher, R. B.
(Ed.), Design and Application of Curves and Surfaces, Oxford University Press,
1994, 31-48

Morris, R. J., The Use of Computer Graphics for Solving Problems in Singular-
ity Theory, In Hege, H.-C., Polthier, K. (Eds.), Visualization and Mathematics,
Springer Verlag, July 1997. 53-66

Ning, P., Bloomenthal, J., An Evaluation of Implicit Surface Tilers, IEEE Com-
puter Graphics and Applications, 13(6), IEEE Comput. Soc. Press, Los Alami-
tos CA, Nov. 1993, pp. 33-41

Phillips, M., Geomview Manual, Version 1.4. The Geometry Center, University
of Minnesota, Minneapolis, 1993.

Polthier, K., Khadem, S., Preuss, E., Reitebuch, U., Publication of Interac-
tive Visualizations with JavaView. In Borwein, J., Morales, M., Polthier, K.,
Rodrigues, J. F. (Eds.) Multimedia Tools for Communicating Mathematics,
Springer Verlag, 2001

Polthier, K., Khadem, S., Preuss, E., Reitebuch, U., JavaView home page,
http://www. javaview.de/

Saupe, D., Ruhl, M., Animation of Algebraic Surfaces. In Hege, H. C., Polthier,
K. (Eds.), Visualization and Mathematics, Springer Verlag, July 1997.
Witkin, A., Heckbert, P., Using particles to sample and control implicit sur-
faces, SIGGRAPH’94, Comp. Graph. Ann. Conf. Ser. (1994), 269-277.



