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Abstra
t

The dual of a surfa
e is the set of all tangent planes to a surfa
e. Duals are a useful

tool for gaining geometri
 information about a surfa
e. Whilst duals theoreti
ally lie

in RP

3

they 
an be proje
ted into R

3

where they 
an be visualised on a 
omputer.

We present a general s
heme for visualising duals, and dis
uss the advantages

and disadvantages of di�erent types of proje
tions. Parts of the visualising pro
ess

involves rotations in R

4

and we des
ribe one method for spe
ifying su
h a rotation.

Any proje
tion from RP

3

to R

3

will have some degenerate points and we dis
uss

how su
h points 
an be easily removed.

Categories and Subje
t Des
riptors: I.3.5 [Computer Graphi
s℄: Computa-

tional Geometry and Obje
t Modeling - 
urves, surfa
e and obje
t representation,

geometri
 algorithms.

General Terms: Algorithms, Experementation.

Additional Key Words and Phrases: Duals, Hough transforms, s
ienti�
 visual-

isation, proje
tive spa
e.

1 Introdu
tion

The dual of a surfa
e is the set of all tangent planes to the surfa
e. We 
an think of

the dual of a surfa
e as the set of points (a; b; 
; d) in proje
tivised 3-spa
e, RP

3

, su
h

that the plane ax+by+
z = d is tangent to the surfa
e. Here the semi-
olon indi
ates

that we are using homogeneous 
oordinates, we have (a; b; 
; d) = (�a;�b;�
;�d)

for all non-zero �. Typi
ally the dual of a surfa
e S will form an other surfa
e in

RP

3


alled the dual surfa
e, S

�

. The dual has a number of interesting properties

whi
h reveal mu
h of the geometry of the original surfa
e. These in
lude:
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1 If x lies on a paraboli
 line on S then the 
orresponding point on the dual, x

�

,

lies on a 
uspidal edge on S

�

.

2 If there is a plane tangent to S at x and y then S

�

has a self interse
tion at

x

�

= y

�

.

3 If S has a 
usp of Gauss at x, then the dual has a swallowtail point at x

�

. (At

a 
usp of Gauss the paraboli
 line on S is tangent to the prin
ipal dire
tion

with zero prin
ipal 
urvature, and the surfa
e has a high order 
onta
t with

the tangent plane. For a detailed investigation of 
usps of Gauss see [?℄.)

If we think of our surfa
e as lying in RP

3

then the dual of the dual gives us ba
k

our original surfa
e. This fa
t gives us the following dual results:

1

�

If x lies on a 
uspidal edge on S then x

�

lies on a paraboli
 line.

2

�

If S has a self-interse
tion then S

�

has a bi-tangent plane.

3

�

If S has a swallowtail point at x then x

�

is a 
usp of Gauss.

These properties make the dual a useful tool for investigating problems in 
om-

puter vision and di�erential geometry. For instan
e in [?℄ the dual plays an impor-

tant part in the study of families of surfa
es. The dual is 
losely linked to the Hough

transform [?℄ whi
h is widely used in 
omputer vision.

The study of dual surfa
es is greatly enhan
ed by being able to 
onstru
t a visual

representation of the dual on a 
omputer. On
e we have su
h a representation it


an be examined using a 3D viewing pa
kage su
h as Geomview [?℄, and questions

about the pattern of 
uspidal edges, swallowtail points, and self interse
tions 
an

be qui
kly answered. In this paper we des
ribe a method for 
onstru
ting su
h a

representation. This 
onsist of four main steps:

1. Cal
ulate the dual in RP

3

(x2).

2. Proje
t into R

4

and apply a rotation in R

4

(x4).

3. Trim the surfa
e in R

4

to remove problem fa
ets (x5).

4. Proje
t from R

4

into R

3

. (x3, x6, x7).

In fa
t we 
an use this algorithm to visualise any obje
t in RP

3

, simply by omitting

the �rst step. We have implemented this pro
ess as a 
omputer program forming

part of the Liverpool Surfa
e Modelling Pa
kage [?, ?℄, other programs in the pa
k-

age are used to generate the surfa
es to be dualised. In x8 we look at how this

visualisation has helped with investigations into 
at umbili
s [?℄ and 
ross-
aps [?℄.
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2 Cal
ulating the Dual

Throughout this paper we will approximate all surfa
es by a set of (not ne
essarily


at) polygons. If we have a surfa
e S represented by a set of polygons in R

3

with

verti
es (x

i

; y

i

; z

i

), and 
orresponding normals (l

i

; m

i

; n

i

); we 
an approximate the

dual as the set of polygons in RP

3

with verti
es (l

i

;m

i

;n

i

; l

i

x

i

+m

i

y

i

+ n

i

z

i

). Ea
h

point of this new set of polygons 
orresponds the the tangent plane l

i

x+m

i

y+n

i

z =

l

i

x

i

+m

i

y

i

+ n

i

z

i

, the �rst three 
oordinates give the normal and the fourth is the

distan
e from the origin to the tangent plane. In pra
ti
e we represent the dual by

the points (l

i

; m

i

; n

i

; l

i

x

i

+m

i

y

i

+ n

i

z

i

) in R

4

, this simpli�es the following steps.

The real problem with visualising the dual 
omes with �nding proje
tions from

RP

3

into R

3

. It is impossible to �nd a one to one map between these spa
es;

typi
ally we 
an either expe
t a) the image of some points lie at in�nity (proje
tive

map), b) some points in RP

3

have two images in R

3

(
onformal map), or 
) many

points in RP

3

are mapped onto the the same point in R

3

(pedal 
urve). The

following se
tions dis
uss the various proje
tions and how we 
an deal with the

degenerate points.

We should note at this point that many 3D graphi
s systems use homogeneous


oordinates internally, and perform a mapping fromRP

3

toR

3

as part of the graph-

i
s pipeline (this mapping is normally equivalent to the proje
tive map dis
ussed

below). Typi
ally these system have no spe
ial treatment of points at in�nity so do

not help us with the spe
ial problems of visualising duals. Furthermore the transfor-

mations used by these systems are not the most appropriate for visualising obje
ts

in RP

3

.

3 The Proje
tive Map

The most frequently en
ountered proje
tion is the proje
tive or Klein map [?, ?℄.

This is obtained from the map (x; y; z;w)! (x=w; y=w; z=w) often 
alled the deho-

mogenizing map. We note that under this map all the points (x; y; z; 0) are mapped

to in�nity. For many surfa
es su
h as the double twisted M�obius band shown in

�gure ??, the points of interest will be mapped to in�nity and 
annot be examined.

In the 
ase of the band whi
h is de�ned by x = 
os(�) + tu

x

, y = sin(�) + tu

y

,

z = tu

z

where � runs between �� and �, t runs from -0.2 to 0.2, and (u

x

; u

y

; u

z

)

is the tangent ve
tor 
os(�)(
os(�); sin(�); 0)+ sin(�)(0; 0; 1), the points (1; 0; 0) and

(�1; 0; 0) both have the same normal, (0; 0; 1), hen
e the dual has a self interse
tion

at the point (0; 0; 1; 0), whi
h we will not be able to see under this proje
tion.

This problem 
an be partially solved by dividing by one of the other 
oordinates,

whi
h still gives a proje
tive map. Here (x; y; z;w) would be mapped to one of the

points (y=x; z=x; w=x), (x=y; z=y; w=y) or (x=z; y=z; w=z). Two proje
tions of the

twisted band are shown in �gure ??. In the �rst we divide by w and in the se
ond
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Figure 1: A double twisted M�obius band

Figure 2: Two di�erent proje
tions of the dual of a double twisted M�obius band,

using the proje
tive model

we divide by z. Note that in the �rst pi
ture there is no indi
ation of the self-

interse
tion, whi
h is 
learly shown in the se
ond. Even in this family there may be

surfa
es where at least one of the points of interest on the dual will be mapped to

in�nity.

A far more general family of proje
tions is obtained by mapping the dual into R

4

using the map (x; y; z;w)! (x; y; z; w), applying a rotation in R

4

and then proje
t-

ing intoR

3

using the dehomogenizing map. Using this s
heme we 
an �nd a rotation

su
h that any 
hosen point (a; b; 
; d), is rotated onto (0; 0; 0;

p

a

2

+ b

2

+ 


2

+ d

2

).

The image of the point after the proje
tion will be the origin, whi
h is typi
ally the


enter of our view.

4 Spe
ifying Rotations in R

4

Rotations in R

4

are represented by 4 x 4 orthonormal matri
es. To aid the viewing

pro
ess we need to �nd a way the user 
an 
hoose a parti
ular matrix.
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One way to spe
ify a rotation matrix, is to de�ne four numbers a, b, 
, d with

a

2

+ b

2

+ 


2

+ d

2

= 1, and uses these as the elements of the fourth row. The

rest of the 
omponents of the matrix 
an be 
omputed automati
ally to ensure the

orthonormal properties of the matrix. This fourth row is the most important as

its entries give the 
oordinates of a point whi
h will be rotated onto (0; 0; 0; 1) and

hen
e proje
ted to the origin. One method for spe
ifying the four points, used by

C. Gunn in his 4-Axis graphi
al widget, is to 
hoose a point (a; b; 
) in the unit ball

and set d =

p

1� a

2

� b

2

� 


2

.

We have used a di�erent method, whi
h is perhaps more intuitive. This involves

a generalisation of the \Glass Sphere" model for rotations in three dimensions. If

we are looking at a sphere in R

3

along the z-axis, we 
an bring any point on the

sphere into view by a repeated appli
ations of small rotations R

x

, R

y

about the x

and y axis. Rotations about the z axis are less important as they do not alter the

parts of the sphere whi
h are visible.

In four dimensions we de�ne three rotations, R

+

xw

, R

+

yw

, R

+

zw

given by the matri
es

0

B

B

B

�

� 0 0 �

0 1 0 0

0 0 1 0

�� 0 0 �

1

C

C

C

A

;

0

B

B

B

�

1 0 0 0

0 � 0 �

0 0 1 0

0 �� 0 �

1

C

C

C

A

;

0

B

B

B

�

1 0 0 0

0 1 0 0

0 0 � �

0 0 �� �

1

C

C

C

A

;

where � = 
os(�), � = sin(�) and � is some small angle (10 degrees in our implemen-

tation). Rotations involving the �rst three 
oordinates are again of little interest

and are better handled by a viewing program after the proje
tion. By repeated

appli
ations of the rotations R

+

xw

, R

+

yw

, R

+

zw

and their inverses R

�

xw

, R

�

yw

, R

�

zw

we


an bring any point on the four sphere into the vi
inity of (0; 0; 0; 1). As ea
h of

the rotations is only by a small amount the resulting image does not 
hange signi�-


antly with ea
h appli
ation. This makes it easy to see the e�e
t of the 
hanges and

navigate through the family of rotations. In fa
t when the R

xw

rotation is applied

the image will appear to move along the x-axis, with part of the image disappearing

o� one side of the s
reen and reappearing on the other side. Hen
e we have a fairly

intuitive method of navigation. These rotations 
an be 
ontrolled by a set of six

buttons: ea
h time a button is pressed the 
orresponding rotation is applied. In

our implementation we a
tually use twelve buttons, six with � = 10

Æ

and six with

� = 1

Æ

. The user interfa
e for the program is shown in �gure ??. At the far right

are four buttons for sele
ting the default rotations whi
h map (0; 0; 0; 1), (1; 0; 0; 0),

(0; 1; 0; 0) or (0; 0; 1; 0) onto (0; 0; 0; 1). To the left of these are the twelve buttons

for applying the in
remental rotations. One of the menu items displays the elements

of the matrix whi
h helps keep tra
k of the rotations.
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Figure 3: The user interfa
e for the dualisation program

5 Problems with fa
es 
rossing the plane w = 0

If we 
onsider the line in R

4

joining the points (1; 0; 0; 0:5) and (1; 0; 0;�0:5) the

endpoints will be proje
ted onto (2; 0; 0) and (�2; 0; 0) using the dehomogenizing

map. Conne
ting these points by a straight line would give a line passing through

the origin, however the a
tual image should really be a 
urve whi
h passes through

in�nity. When 
al
ulating the proje
tion we really want to �nd an approximation to

the 
urve. A related problem is that points with small values of w will be proje
ted

a great distan
e from the origin. Visually this is distra
ting, and improved results

are obtained by only showing the part of the surfa
e lying inside a sphere of radius

R.

These problems 
an be over
ome by �rst 
utting the surfa
e into two halves with

w > 0 and w < 0 and then �nding the points of the surfa
e where f(x; y; z; w) =

R

2

w

2

�x

2

�y

2

�z

2

� 0. This last equation de�nes a generalisation of a double 
one in

R

4

, the image of this 
one will give a sphere of radius R. Any line whi
h 
rosses this


one will be 
ut into two parts and we dis
ard the part with f < 0. Figure ?? shows

a line AB with A = (1; 0; 0; 0:5), B = (1; 0; 0;�0:5) and the 
one 
orresponding to

a sphere of radius 4. The line will �rst be 
ut at the point C = (1; 0; 0; 0), and then

at the points D = (1; 0; 0; 0:25), E = (1; 0; 0;�0:25). We will keep the segments

AD and EB whi
h proje
t to the lines (2; 0; 0)::(4; 0; 0) and (�2; 0; 0)::(�4; 0; 0)

respe
tively. Straight lines o�er a fair representation of the a
tual image in the

region inside the sphere. The segments DC and CE are dis
arded as they proje
t

to 
urves outside the sphere, and also have one point at in�nity. The pi
tures in

�gure ?? show surfa
es whi
h have been sli
ed in this way whi
h 
an be 
ompared

with �gure ?? where this dual is shown without trimming, note the spurious fa
ets.

The situation is further 
ompli
ated if we 
onsider the duals of surfa
es where
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x

w

B

x +y +z −Rw =02 22 2 A

C

D

E

Figure 4: Cutting a line by a 
one

Figure 5: The dual of the M�obius band without the trimming step.
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x

w

B

x +y +z −Rw =02 22 2

A

−B

Figure 6: Choosing lo
al orientations.

the normals have not been given a 
onsistent orientation. One example of this is the


uspidal edge X = �s

2

� 0:3t

2

, Y = s

3

+0:5t

2

, Z = t shown in �gure ??a. Here the

normals 
hange sign through 180

Æ

as we 
ross the edge, so points on either side of

the edge will 
orrespond to diametri
ally opposite points in R

4

, say (x; y; z; w) and

(�x

0

;�y

0

;�z

0

;�w

0

) with x � x

0

et
. Using the above trimming algorithm would

give several spurious points as show in �gure ??b. This problem 
an be over
ome by


hoosing lo
al orientations. Say we have two points A, B in R

4

su
h that A �B < 0,

rather than 
onsidering the line 
onne
ting A and B we instead work with the line

joining A and �B. This line will give the 
orre
t interse
tion points with the 
one

(Fig. ??). For trimming a fa
e A, B, C we a
tually work with the fa
e A, B

0

, C

0

where B

0

= B if A � B > 0 and B

0

= �B if A � B < 0 and similarly for C

0

. This


onvention only works lo
ally, i.e. 
onsidering ea
h fa
e separately, where it is a

reasonable assumption that the points are 
lose together in RP

3

. Figure ??
 shows

the 
orre
t dual of a 
uspidal edge obtained in this way.

6 The 
onformal map

We 
an think of RP

3

as the set of lines in R

4

whi
h pass through the origin. If we

take the interse
tion of these lines with the lower hemisphere of the 3-sphere in R

4

,

we 
an represent any obje
t in RP

3

as a set of points in the three-sphere. Expli
itly

we use the map (x; y; z;w)! sign(w)=l � (x; y; z; w) where l =

p

x

2

+ y

2

+ z

2

+ w

2

.

We 
an then use any of the well-known proje
tions of the 3-sphere in to R

3

(see

for example [?, ?℄). The most useful of these is the 
onformal or stereographi


proje
tion where we proje
t from the point (0; 0; 0; 1) onto the hyperplane w = �1

i.e. (x; y; z; w) ! 2=(1 � w)(x; y; z). We 
an see that the lower hemisphere will

be proje
ted into the interior of the ball of radius 2. This gives us an important

property for visualisation: the whole of of a dual surfa
e 
an be seen at the same

time, with the 
autionary note that antipodal points on the boundary of the ball
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(a)

(b) (c)

Figure 7: A 
uspidal edge (a) and its dual whi
h has been trimmed using a naive

method (b) and taking lo
al orientations into a

ount (
).
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Figure 8: Two di�erent proje
tions of the double twisted M�obius band using the


onformal model.

should be identi�ed. We 
an use the same rotations and trimming algorithms from

the previous se
tions to give a whole family of proje
tions. In this 
ase interse
ting

with a 
one insures the image lies stri
tly in the interior of the ball and any problems

with the antipodal points are avoided. Figure ?? shows the image of the twisted

band using the 
onformal proje
tion and the same two rotations as in �gure ??.

Even though though the self interse
tion lies at in�nity in the �rst of these pi
tures,

there are still strong 
lues as to its existen
e whi
h were not indi
ated using the

proje
tive map.

Using the 
onformal map most of the properties of the dual are preserved. How-

ever 
onformal maps typi
ally map straight lines to 
ir
les, so we need to re-write

2

�

:

2

�

If S has a self-interse
tion then the dual S

�

has a bi-tangent sphere.

We also lose the property that the dual of a dual gives us our original surfa
e. In

many appli
ation the ability to see the whole of the dual outweighs the loss of this

information. As straight lines map to 
ir
les we should really use 
urves for the

boundaries of our polygons. In pra
ti
e this step is not ne
essary provided we have

a �ne enough mesh of polygons approximating our original surfa
e.

7 Other Proje
tions

On
e the me
hanism for 
al
ulating the dual, performing rotations, and trimming

the surfa
e have been set up it is an easy matter to add other proje
tions. Let

(x; y; z; w) be a point on the dual inR

4

. Some other examples of proje
tions in
lude:

The Gauss Map: (x; y; z; w) ! 1=

p

x

2

+ y

2

+ z

2

(x; y; z). This maps normals at

ea
h point on S onto its spheri
al image on the unit sphere. This map has

been extensively studied [?℄ and makes apparent many features of the original

10



surfa
e. Paraboli
 lines be
ome folds in the image and Cusps of Gauss be
ome


usps on the fold line. However bi-tangent lines 
an not be identi�ed.

The Pedal Curve: (x; y; z; w) ! (xw; yw; zw). This map pi
ks out the point on

the tangent plane to S 
losest to the origin. Most of the features of the dual

are represented here, and for a 
ompa
t surfa
e the image will be 
ompa
t,

however all the tangent planes through the origin will be represented by a

single point, the origin.

The Geomview program allows hyperboli
, and spheri
al spa
es to be viewed

as if the viewer lived inside the spa
e [?℄. Instead of using the normal Eu
lidean

matrix to determine the straight lines for the light paths, the appropriate metri
 for

hyperboli
 or spheri
al spa
e determine the geodesi
s in that spa
e and hen
e what

parts of the surfa
es 
an be seen. Motions through this spa
e are also determined

using these metri
s. This o�ers a very di�erent method for studying the surfa
e,

rather than the dual being viewed as an obje
t we 
ould pi
k up and examine, the

dual be
omes an obje
t whi
h we 
y around to get to the points of interest. For

questions like \How many 
usps does the dual of this surfa
e have?" the previous

methods may be more appropriate. In 
onjun
tion with this virtual method we 
an

represent a dual surfa
e in a number of ways:

Positive Hemisphere: (x; y; z; w)! sign(w)=l � (x; y; z; w);

Negative Hemisphere: (x; y; z; w)! �sign(w)=l � (x; y; z; w);

Oriented version: (x; y; z; w)! 1=l � (x; y; z; w);

where l =

p

x

2

+ y

2

+ z

2

+ w

2

. The �rst two of these give images whi
h do not

depend on the orientation, i.e. if we reverse the dire
tions of the normals on the

original surfa
e we will still get the same points on the four sphere. The third

proje
tion respe
ts orientation, reversing the dire
tion of the normal will give an

antipodal point. One �nal method is obtained by taking the unions of the images

in the positive and negative hemispheres, this 
reates a double version of the dual

whi
h appears to be 
ontinuous as we 
y around it.

So far we have always 
onstru
ted the dual with respe
t to the origin: when


onstru
ting the dual we take the 
omponents of the normal ve
tor and the distan
e

from the origin as our point in RP

3

. It may well be the 
ase that the origin is

not the best pla
e to dualise about, for example when the surfa
e a
tually passes

through the origin. It is a simple matter to 
hange the de�nition of the dual, and

use (l;m;n; l(x � x

0

) + m(y � y

0

) + n(z � z

0

)) as the dual of the point (x; y; z)

with normal (l; m; n). The values of x

0

, y

0

, z

0


an then be spe
i�ed by the user.

Changing the 
enter in this way has no e�e
t on the stru
ture of 
uspidal edges and

self interse
tions of the dual, but may help to avoid problems with the w = 0 plane.

This is equivalent to translating the surfa
e and then 
al
ulating the dual.
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Figure 9: The dual of a slight deformation of a 
at ellipti
al umbili
.

8 Con
lusion

So far the 
omputer program des
ribed here has proved useful in a number of in-

vestigations, in singularity theory. In the study of 
at umbili
s [?℄ Tari and myself

qui
kly produ
ed pi
tures of duals of the two 
ases, (ellipti
al and hyperboli
), and

also of slight deformations of these surfa
es whi
h show a more generi
 geometry.

Figure ?? show the dual of a slight deformation of an 
at ellipti
al umbili
, note

how the dual has three swallowtail points linked by a 
uspidal edge. Furthermore

the dual also 
ontains a triple point (hidden from view). This allowed us to qui
kly

dedu
e the geometry of the original surfa
e, whi
h must have three 
usps of Gauss,

and one tri-tangent plane. Whilst the stru
ture of paraboli
 lines on a surfa
e is

easy to 
al
ulate, �nding bi-tangent planes typi
ally involves solving three equations

in four unknowns whi
h 
an take a 
onsiderable time, su
h 
urves are very apparent

when we look at the dual.

A tri
kier investigation was the duals of 
ross-
aps [?℄, parameterised by

(u; uv; au

2

+ buv + v

2

+ O(3)). Here the dual of the a
tual 
ross-
ap point should

give a line in RP

3

(taking the limiting tangent planes as we approa
h the 
ross-


ap point from di�erent dire
tion give a one parameter family of planes). Whilst

the above program 
an not deal with su
h singular points, we 
an remove a small

neighbourhood of the origin and 
al
ulate the dual of the resulting surfa
e. If we

take a small enough neighbourhood the dual will have an edge 
orresponding to this

ex
eptional line. Here the 
onformal proje
tion is parti
ularly useful as it enables

us to see the whole of this edge, whi
h will always 
ut the plane w = 0 no matter

what rotation we use, (Fig. ??).
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Figure 10: The dual of a 
ross-
ap.
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