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Abstract

The dual of a surface is the set of all tangent planes to a surface. Duals are a useful
tool for gaining geometric information about a surface. Whilst duals theoretically lie
in RP? they can be projected into R® where they can be visualised on a computer.

We present a general scheme for visualising duals, and discuss the advantages
and disadvantages of different types of projections. Parts of the visualising process
involves rotations in R* and we describe one method for specifying such a rotation.
Any projection from RP? to R? will have some degenerate points and we discuss
how such points can be easily removed.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling - curves, surface and object representation,
geometric algorithms.

General Terms: Algorithms, Experementation.

Additional Key Words and Phrases: Duals, Hough transforms, scientific visual-
isation, projective space.

1 Introduction

The dual of a surface is the set of all tangent planes to the surface. We can think of
the dual of a surface as the set of points (a; b; ¢; d) in projectivised 3-space, RP3, such
that the plane ax+by+cz = d is tangent to the surface. Here the semi-colon indicates
that we are using homogeneous coordinates, we have (a;b;c;d) = (aa; ab; ac; ad)
for all non-zero . Typically the dual of a surface S will form an other surface in
RP? called the dual surface, S*. The dual has a number of interesting properties
which reveal much of the geometry of the original surface. These include:
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1 If x lies on a parabolic line on S then the corresponding point on the dual, z*,
lies on a cuspidal edge on S*.

2 If there is a plane tangent to S at z and y then S* has a self intersection at
T =y*.

3 If S has a cusp of Gauss at x, then the dual has a swallowtail point at z*. (At
a cusp of Gauss the parabolic line on S is tangent to the principal direction
with zero principal curvature, and the surface has a high order contact with
the tangent plane. For a detailed investigation of cusps of Gauss see [?].)

If we think of our surface as lying in RP? then the dual of the dual gives us back
our original surface. This fact gives us the following dual results:

1* If x lies on a cuspidal edge on S then x* lies on a parabolic line.
2* If S has a self-intersection then S* has a bi-tangent plane.
3* If S has a swallowtail point at x then z* is a cusp of Gauss.

These properties make the dual a useful tool for investigating problems in com-
puter vision and differential geometry. For instance in [?] the dual plays an impor-
tant part in the study of families of surfaces. The dual is closely linked to the Hough
transform [?] which is widely used in computer vision.

The study of dual surfaces is greatly enhanced by being able to construct a visual
representation of the dual on a computer. Once we have such a representation it
can be examined using a 3D viewing package such as Geomview [?], and questions
about the pattern of cuspidal edges, swallowtail points, and self intersections can
be quickly answered. In this paper we describe a method for constructing such a
representation. This consist of four main steps:

1. Calculate the dual in RP? (§2).

2. Project into R* and apply a rotation in R?* (§4).

3. Trim the surface in R* to remove problem facets (§5).
4. Project from R* into R?. (§3, §6, §7).

In fact we can use this algorithm to visualise any object in RP?, simply by omitting
the first step. We have implemented this process as a computer program forming
part of the Liverpool Surface Modelling Package [?, 7], other programs in the pack-
age are used to generate the surfaces to be dualised. In §8 we look at how this
visualisation has helped with investigations into flat umbilics [?] and cross-caps [?].



2 Calculating the Dual

Throughout this paper we will approximate all surfaces by a set of (not necessarily
flat) polygons. If we have a surface S represented by a set of polygons in R? with
vertices (z;,y;, 2;), and corresponding normals (I;, m;, n;); we can approximate the
dual as the set of polygons in RP? with vertices (I;; m;; ng; liw; +mgy; +n;z). Each
point of this new set of polygons corresponds the the tangent plane l;x+m;y+n;z =
l;x; + m;y; + n;z;, the first three coordinates give the normal and the fourth is the
distance from the origin to the tangent plane. In practice we represent the dual by
the points (;, m;, ng, liz; + myy; + n;z;) in R*, this simplifies the following steps.

The real problem with visualising the dual comes with finding projections from
RP? into R?. It is impossible to find a one to one map between these spaces;
typically we can either expect a) the image of some points lie at infinity (projective
map), b) some points in RP? have two images in R? (conformal map), or ¢) many
points in RP? are mapped onto the the same point in R? (pedal curve). The
following sections discuss the various projections and how we can deal with the
degenerate points.

We should note at this point that many 3D graphics systems use homogeneous
coordinates internally, and perform a mapping from RP? to R? as part of the graph-
ics pipeline (this mapping is normally equivalent to the projective map discussed
below). Typically these system have no special treatment of points at infinity so do
not help us with the special problems of visualising duals. Furthermore the transfor-

mations used by these systems are not the most appropriate for visualising objects
in RP?.

3 The Projective Map

The most frequently encountered projection is the projective or Klein map [?, ?].
This is obtained from the map (z;y; z; w) — (z/w,y/w, z/w) often called the deho-
mogenizing map. We note that under this map all the points (x;y; z;0) are mapped
to infinity. For many surfaces such as the double twisted Mobius band shown in
figure 77?7, the points of interest will be mapped to infinity and cannot be examined.
In the case of the band which is defined by = = cos(f) + tu,, y = sin(6) + tu,,
z = tu, where # runs between —m and 7, ¢t runs from -0.2 to 0.2, and (u,, uy, u,)
is the tangent vector cos(€)(cos(0),sin(@), 0) +sin(6)(0,0, 1), the points (1,0, 0) and
(—1,0,0) both have the same normal, (0,0, 1), hence the dual has a self intersection
at the point (0;0;1;0), which we will not be able to see under this projection.

This problem can be partially solved by dividing by one of the other coordinates,
which still gives a projective map. Here (x;y; z; w) would be mapped to one of the
points (y/x, z/z,w/x), (x/y,z/y,w/y) or (x/z,y/z,w/z). Two projections of the
twisted band are shown in figure ?7. In the first we divide by w and in the second



Figure 1: A double twisted M6bius band

Figure 2: Two different projections of the dual of a double twisted Mobius band,
using the projective model

we divide by z. Note that in the first picture there is no indication of the self-
intersection, which is clearly shown in the second. Even in this family there may be
surfaces where at least one of the points of interest on the dual will be mapped to
infinity.

A far more general family of projections is obtained by mapping the dual into R*
using the map (x;y; z;w) — (x,y, z, w), applying a rotation in R* and then project-
ing into R? using the dehomogenizing map. Using this scheme we can find a rotation
such that any chosen point (a,b,c,d), is rotated onto (0,0,0,va? + b2 + c2 + d?).
The image of the point after the projection will be the origin, which is typically the
center of our view.

4 Specifying Rotations in R*

Rotations in R* are represented by 4 x 4 orthonormal matrices. To aid the viewing
process we need to find a way the user can choose a particular matrix.



One way to specify a rotation matrix, is to define four numbers a, b, ¢, d with
a? + > + ¢ + d*> = 1, and uses these as the elements of the fourth row. The
rest of the components of the matrix can be computed automatically to ensure the
orthonormal properties of the matrix. This fourth row is the most important as
its entries give the coordinates of a point which will be rotated onto (0,0,0,1) and
hence projected to the origin. One method for specifying the four points, used by
C. Gunn in his 4-Axis graphical widget, is to choose a point (a, b, ¢) in the unit ball
and set d = /1 — a? — b2 — 2.

We have used a different method, which is perhaps more intuitive. This involves
a generalisation of the “Glass Sphere” model for rotations in three dimensions. If
we are looking at a sphere in R? along the z-axis, we can bring any point on the
sphere into view by a repeated applications of small rotations R,, I?, about the x
and y axis. Rotations about the z axis are less important as they do not alter the
parts of the sphere which are visible.

In four dimensions we define three rotations, R ., R

R} given by the matrices

Tw? " yw? w
a 0 0 B 1 0 0 0 10 0 0
0 1 0 0 0 a 0 B 01 0 0
o o1 0f’f0O 0 1T 010 0 «a B’
-5 0 0 « 0 -8 0 « 0 0 -8 «

where o = cos(€), f = sin(#) and 6 is some small angle (10 degrees in our implemen-
tation). Rotations involving the first three coordinates are again of little interest
and are better handled by a viewing program after the projection. By repeated
applications of the rotations R}, , R}, R, and their inverses R, R, , R, we
can bring any point on the four sphere into the vicinity of (0,0,0,1). As each of
the rotations is only by a small amount the resulting image does not change signifi-
cantly with each application. This makes it easy to see the effect of the changes and
navigate through the family of rotations. In fact when the R,, rotation is applied
the image will appear to move along the x-axis, with part of the image disappearing
off one side of the screen and reappearing on the other side. Hence we have a fairly
intuitive method of navigation. These rotations can be controlled by a set of six
buttons: each time a button is pressed the corresponding rotation is applied. In
our implementation we actually use twelve buttons, six with # = 10° and six with
f = 1°. The user interface for the program is shown in figure ??. At the far right
are four buttons for selecting the default rotations which map (0,0,0,1), (1,0,0,0),
(0,1,0,0) or (0,0,1,0) onto (0,0,0,1). To the left of these are the twelve buttons
for applying the incremental rotations. One of the menu items displays the elements
of the matrix which helps keep track of the rotations.
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Figure 3: The user interface for the dualisation program

5 Problems with faces crossing the plane w =0

If we consider the line in R* joining the points (1,0,0,0.5) and (1,0,0,—0.5) the
endpoints will be projected onto (2,0,0) and (—2,0,0) using the dehomogenizing
map. Connecting these points by a straight line would give a line passing through
the origin, however the actual image should really be a curve which passes through
infinity. When calculating the projection we really want to find an approximation to
the curve. A related problem is that points with small values of w will be projected
a great distance from the origin. Visually this is distracting, and improved results
are obtained by only showing the part of the surface lying inside a sphere of radius
R.

These problems can be overcome by first cutting the surface into two halves with
w > 0 and w < 0 and then finding the points of the surface where f(z,y,z, w) =
R*w?—1%—y?—2% > 0. This last equation defines a generalisation of a double cone in
R, the image of this cone will give a sphere of radius R. Any line which crosses this
cone will be cut into two parts and we discard the part with f < 0. Figure 77 shows
a line AB with A = (1,0,0,0.5), B = (1,0,0,—0.5) and the cone corresponding to
a sphere of radius 4. The line will first be cut at the point C' = (1,0,0,0), and then
at the points D = (1,0,0,0.25), £ = (1,0,0,—0.25). We will keep the segments
AD and EB which project to the lines (2,0,0)..(4,0,0) and (—2,0,0)..(—4,0,0)
respectively. Straight lines offer a fair representation of the actual image in the
region inside the sphere. The segments DC' and C'E are discarded as they project
to curves outside the sphere, and also have one point at infinity. The pictures in
figure 77 show surfaces which have been sliced in this way which can be compared
with figure 7?7 where this dual is shown without trimming, note the spurious facets.

The situation is further complicated if we consider the duals of surfaces where
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Figure 4: Cutting a line by a cone

Figure 5: The dual of the Mo6bius band without the trimming step.
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Figure 6: Choosing local orientations.

the normals have not been given a consistent orientation. One example of this is the
cuspidal edge X = —s? —0.3t?, Y = s* +0.5¢%, Z = t shown in figure ?7a. Here the
normals change sign through 180° as we cross the edge, so points on either side of
the edge will correspond to diametrically opposite points in R?, say (z,y, z, w) and
(—a', —y', =2, —w') with z ~ 2’ etc. Using the above trimming algorithm would
give several spurious points as show in figure ??b. This problem can be overcome by
choosing local orientations. Say we have two points 4, B in R* such that A- B < 0,
rather than considering the line connecting A and B we instead work with the line
joining A and —B. This line will give the correct intersection points with the cone
(Fig. 7?). For trimming a face A, B, C' we actually work with the face A, B', C’
where B' = Bif A-B >0and B' = —B if A- B < 0 and similarly for C'. This
convention only works locally, i.e. considering each face separately, where it is a
reasonable assumption that the points are close together in RP?. Figure ??c shows
the correct dual of a cuspidal edge obtained in this way.

6 The conformal map

We can think of RP? as the set of lines in R* which pass through the origin. If we
take the intersection of these lines with the lower hemisphere of the 3-sphere in R?,
we can represent any object in RP? as a set of points in the three-sphere. Explicitly
we use the map (z;y; z; w) — sign(w)/l* (z,y, z, w) where [ = /2% + y? + 22 + w?.
We can then use any of the well-known projections of the 3-sphere in to R? (see
for example [?, ?]). The most useful of these is the conformal or stereographic
projection where we project from the point (0,0,0,1) onto the hyperplane w = —1
ie. (z,y,z,w) = 2/(1 —w)(z,y,2). We can see that the lower hemisphere will
be projected into the interior of the ball of radius 2. This gives us an important
property for visualisation: the whole of of a dual surface can be seen at the same
time, with the cautionary note that antipodal points on the boundary of the ball
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Figure 7: A cuspidal edge (a) and its dual which has been trimmed using a naive
method (b) and taking local orientations into account (c).



Figure 8: Two different projections of the double twisted Mobius band using the
conformal model.

should be identified. We can use the same rotations and trimming algorithms from
the previous sections to give a whole family of projections. In this case intersecting
with a cone insures the image lies strictly in the interior of the ball and any problems
with the antipodal points are avoided. Figure 77 shows the image of the twisted
band using the conformal projection and the same two rotations as in figure ?7?.
Even though though the self intersection lies at infinity in the first of these pictures,
there are still strong clues as to its existence which were not indicated using the
projective map.

Using the conformal map most of the properties of the dual are preserved. How-

ever conformal maps typically map straight lines to circles, so we need to re-write
2%

2* If S has a self-intersection then the dual S* has a bi-tangent sphere.

We also lose the property that the dual of a dual gives us our original surface. In
many application the ability to see the whole of the dual outweighs the loss of this
information. As straight lines map to circles we should really use curves for the
boundaries of our polygons. In practice this step is not necessary provided we have
a fine enough mesh of polygons approximating our original surface.

7 Other Projections

Once the mechanism for calculating the dual, performing rotations, and trimming
the surface have been set up it is an easy matter to add other projections. Let
(z,1,z,w) be a point on the dual in R*. Some other examples of projections include:

The Gauss Map: (z,y,z,w) = 1/\/2>+y?> + 2?(z,y,2). This maps normals at
each point on S onto its spherical image on the unit sphere. This map has
been extensively studied [?] and makes apparent many features of the original
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surface. Parabolic lines become folds in the image and Cusps of Gauss become
cusps on the fold line. However bi-tangent lines can not be identified.

The Pedal Curve: (z,y,z,w) — (zw,yw, zw). This map picks out the point on
the tangent plane to S closest to the origin. Most of the features of the dual
are represented here, and for a compact surface the image will be compact,
however all the tangent planes through the origin will be represented by a
single point, the origin.

The Geomview program allows hyperbolic, and spherical spaces to be viewed
as if the viewer lived inside the space [?]. Instead of using the normal Euclidean
matrix to determine the straight lines for the light paths, the appropriate metric for
hyperbolic or spherical space determine the geodesics in that space and hence what
parts of the surfaces can be seen. Motions through this space are also determined
using these metrics. This offers a very different method for studying the surface,
rather than the dual being viewed as an object we could pick up and examine, the
dual becomes an object which we fly around to get to the points of interest. For
questions like “How many cusps does the dual of this surface have?” the previous
methods may be more appropriate. In conjunction with this virtual method we can
represent a dual surface in a number of ways:

Positive Hemisphere: (z,y, z, w) — sign(w)/l * (x,y, z, w);
Negative Hemisphere: (z,y,z, w) — —sign(w)/l x (x,y, z, w);

Oriented version: (z,y,z,w) — 1/l * (z,y, 2, w);

where | = /22 + y?> + 22 + w?. The first two of these give images which do not
depend on the orientation, i.e. if we reverse the directions of the normals on the
original surface we will still get the same points on the four sphere. The third
projection respects orientation, reversing the direction of the normal will give an
antipodal point. One final method is obtained by taking the unions of the images
in the positive and negative hemispheres, this creates a double version of the dual
which appears to be continuous as we fly around it.

So far we have always constructed the dual with respect to the origin: when
constructing the dual we take the components of the normal vector and the distance
from the origin as our point in RP?. It may well be the case that the origin is
not the best place to dualise about, for example when the surface actually passes
through the origin. It is a simple matter to change the definition of the dual, and
use (I;m;n;l(x — xo) + m(y — yo) + n(z — 2)) as the dual of the point (z,y, 2)
with normal (I,m,n). The values of zy, 39, 20 can then be specified by the user.
Changing the center in this way has no effect on the structure of cuspidal edges and
self intersections of the dual, but may help to avoid problems with the w = 0 plane.
This is equivalent to translating the surface and then calculating the dual.
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Figure 9: The dual of a slight deformation of a flat elliptical umbilic.

8 Conclusion

So far the computer program described here has proved useful in a number of in-
vestigations, in singularity theory. In the study of flat umbilics [?] Tari and myself
quickly produced pictures of duals of the two cases, (elliptical and hyperbolic), and
also of slight deformations of these surfaces which show a more generic geometry.
Figure 7?7 show the dual of a slight deformation of an flat elliptical umbilic, note
how the dual has three swallowtail points linked by a cuspidal edge. Furthermore
the dual also contains a triple point (hidden from view). This allowed us to quickly
deduce the geometry of the original surface, which must have three cusps of Gauss,
and one tri-tangent plane. Whilst the structure of parabolic lines on a surface is
easy to calculate, finding bi-tangent planes typically involves solving three equations
in four unknowns which can take a considerable time, such curves are very apparent
when we look at the dual.

A trickier investigation was the duals of cross-caps [?], parameterised by
(u, uv, au® + buv + v* + O(3)). Here the dual of the actual cross-cap point should
give a line in RP? (taking the limiting tangent planes as we approach the cross-
cap point from different direction give a one parameter family of planes). Whilst
the above program can not deal with such singular points, we can remove a small
neighbourhood of the origin and calculate the dual of the resulting surface. If we
take a small enough neighbourhood the dual will have an edge corresponding to this
exceptional line. Here the conformal projection is particularly useful as it enables
us to see the whole of this edge, which will always cut the plane w = 0 no matter
what rotation we use, (Fig. 7?).
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Figure 10: The dual of a cross-cap.
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